期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于半监督学习的非结构化道路缺陷检测算法
1
作者 朱思远 李佳圣 +2 位作者 邹丹平 何迪 郁文贤 《计算机工程》 北大核心 2025年第9期14-24,共11页
非结构化道路的缺陷目标检测任务对道路交通安全具有重要意义,但检测所需的标注数据集相对有限。为了解决非结构化道路标注数据集缺乏以及现有模型对无标注数据学习能力不足的问题,提出一种MAM(Multi-Augmentation with Memory)半监督... 非结构化道路的缺陷目标检测任务对道路交通安全具有重要意义,但检测所需的标注数据集相对有限。为了解决非结构化道路标注数据集缺乏以及现有模型对无标注数据学习能力不足的问题,提出一种MAM(Multi-Augmentation with Memory)半监督目标检测算法。首先,引入缓存机制存储无标注图像和带有伪标注图像的框回归位置信息,避免了后续匹配造成的计算资源浪费。其次,设计混合数据增强策略,将缓存的伪标签图像与无标签图像混合输入学生模型,以增强模型对新数据的泛化能力,并使图像的尺度分布更加均衡。MAM算法不受目标检测模型的限制,并且更好地保持了目标框的一致性,避免了计算一致性损失。实验结果表明,MAM算法相比其他全监督学习和半监督学习算法更具优越性,在自建的非结构化道路缺陷数据集Defect上,在标注比例为10%、20%和30%的场景下,MAM算法的均值平均精度(mAP)相比于Soft Teacher算法分别提升了6.8、11.1和6.0百分点,在自建的非结构化道路坑洼数据集Pothole上,在标注比例为15%和30%的场景下,MAM算法的mAP相比于Soft Teacher算法分别提升了5.8和4.3百分点。 展开更多
关键词 结构化道路 缺陷目标检测 监督学习 伪标签 缓存机制 混合数据增强
在线阅读 下载PDF
基于知识蒸馏和半监督学习的非侵入式负荷分解 被引量:5
2
作者 何健明 李梦诗 +1 位作者 张禄亮 季天瑶 《广东电力》 2021年第9期60-70,共11页
非侵入式负荷监测(non-intrusive load monitoring,NILM)中的负荷分解是一种将负荷总功率分解为各类负荷功率的技术;随着深度学习理论的发展,基于神经网络的负荷分解模型的误差逐渐降低,同时也带来了模型参数量大幅增加的问题。为了降... 非侵入式负荷监测(non-intrusive load monitoring,NILM)中的负荷分解是一种将负荷总功率分解为各类负荷功率的技术;随着深度学习理论的发展,基于神经网络的负荷分解模型的误差逐渐降低,同时也带来了模型参数量大幅增加的问题。为了降低模型分解功率的误差,提出一种基于序列到序列(sequence to sequence,seq2seq)、双向门控循环单元(bi-directional gating recurrent unit,BiGRU)、自注意力机制和残差网络的负荷分解算法;为了减少神经网络的参数并充分利用无标签数据,提出一种基于知识蒸馏和半监督学习的训练框架;无标签数据经由预训练的教师网络处理,得到时序概率分布,用于指导学生网络的训练。在开源数据集REFIT上进行的模型性能测试结果表明,学生网络参数量仅为教师网络参数量的6.7%,平均绝对误差仅增加5.8%。 展开更多
关键词 侵入式负荷监测 知识蒸馏 监督学习 深度学习 双向门控循环单元 自注意力机制
在线阅读 下载PDF
非对称端到端的无监督图像去雨网络
3
作者 江锐 刘威 +1 位作者 陈成 卢涛 《计算机应用》 CSCD 北大核心 2024年第3期922-930,共9页
现有的基于学习的单幅图像去雨网络大都关注雨天图像中雨痕对于视觉成像的影响,而忽略了雨天环境下由于空气中湿度的增加所产生的雾气对视觉成像的影响,因此造成去雨后图像的生成质量低、纹理细节信息模糊等问题。针对该问题,提出一种... 现有的基于学习的单幅图像去雨网络大都关注雨天图像中雨痕对于视觉成像的影响,而忽略了雨天环境下由于空气中湿度的增加所产生的雾气对视觉成像的影响,因此造成去雨后图像的生成质量低、纹理细节信息模糊等问题。针对该问题,提出一种非对称端到端的无监督图像去雨网络模型,该模型主要包含雨雾去除网络、雨雾特征提取网络和雨雾生成网络,并由它们组成两个不同数据域映射转换模块:Rain-Clean-Rain和Clean-Rain-Clean。上述三个子网络构成并行的两条转换路径:去雨路径和雨雾特征提取路径。在雨雾特征提取路径上,提出一种基于全局和局部注意力机制的雨雾感知提取网络,利用雨雾特征存在的全局自相似性和局部差异性学习雨-雾相关特征;在去雨路径上,引入雨天图像退化模型和上述提取的雨雾相关特征作为先验知识以增强雨雾图像生成的能力,从而约束雨雾去除网络,提高它从雨天数据域到无雨数据域的映射转换能力。在不同雨天图像数据集上的实验结果表明,与较先进的去雨方法CycleDerain相比,在合成雨雾数据集HeavyRain上所提方法的峰值信噪比(PSNR)提升了31.55%,能适应不同的雨天场景,具有更好的泛化性,并且能更好地复原图像的细节和纹理信息。 展开更多
关键词 单幅图像去雨 配对训练 注意力机制 监督学习 先验知识
在线阅读 下载PDF
基于卷积神经网络和投票机制的三维模型分类与检索 被引量:21
4
作者 白静 司庆龙 秦飞巍 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第2期303-314,共12页
针对现有基于深度学习的三维模型多视图分类算法利用最大池化、平均池化等像素级运算完成视图信息的融合,可能造成模型有益信息淹没和混淆的问题,提出一种基于卷积神经网络和投票机制的三维模型分类检索算法.首先将三维模型转化为一组... 针对现有基于深度学习的三维模型多视图分类算法利用最大池化、平均池化等像素级运算完成视图信息的融合,可能造成模型有益信息淹没和混淆的问题,提出一种基于卷积神经网络和投票机制的三维模型分类检索算法.首先将三维模型转化为一组二维视图,然后基于丰富的数字图像库ImageNet和成熟的图像深度学习模型CaffeNet完成二维视图的分类,最后利用加权投票的方式完成三维模型的分类;同时基于投票机制,提出4种三维模型距离度量算法,支持三维模型的检索.将文中算法应用于刚性三维模型库ModelNet10,ModelNet40,非刚性三维模型库SHREC10, SHREC11和SHREC15中,分类准确率分别为93.18%, 93.07%, 99.5%, 99.5%和99.4%,检索性能突出;并通过实验验证该算法的有效性. 展开更多
关键词 三维模型检索 卷积神经网络 投票机制 深度学习 刚性三维模型
在线阅读 下载PDF
不同程度的监督机制在自动文本分类中的应用 被引量:1
5
作者 丁磊 钱云涛 《计算机应用与软件》 CSCD 北大核心 2004年第6期65-68,共4页
自动文本分类技术涉及信息检索、模式识别及机器学习等领域。本文以监督的程度为线索 ,综述了分属全监督 ,非监督以及半监督学习策略的若干方法—NBC(Na veBayesClassifier) ,FCM (FuzzyC Means) ,SOM (Self OrganizingMap) ,ssFCM (sem... 自动文本分类技术涉及信息检索、模式识别及机器学习等领域。本文以监督的程度为线索 ,综述了分属全监督 ,非监督以及半监督学习策略的若干方法—NBC(Na veBayesClassifier) ,FCM (FuzzyC Means) ,SOM (Self OrganizingMap) ,ssFCM (semi supervisedFuzzyC Means)和gSOM(guidedSelf OrganizingMap) ,并应用于文本分类中。其中 ,gSOM是我们在SOM基础上发展得到的半监督形式。并以Reuters 2 15 78为语料 ,研究了监督程度对分类效果的影响 ,从而提出了对实际文本分类工作的建议。 展开更多
关键词 监督机制 自动文本分类技术 信息检索 模式识别 机器学习 监督学习 监督学习
在线阅读 下载PDF
融合特征注意力机制的非均匀光照图像增强算法 被引量:1
6
作者 王书朋 何引弟 《计算机工程》 CAS CSCD 北大核心 2023年第8期232-239,共8页
在非均匀光照环境下用户获取到的图像往往呈现亮度分布不均、细节丢失等特点。针对现有图像增强算法在处理非均匀光照图像时容易造成局部过度增强或增强不足等问题,提出一种融合特征注意力机制的非均匀光照图像增强算法(ULIEN)。通过学... 在非均匀光照环境下用户获取到的图像往往呈现亮度分布不均、细节丢失等特点。针对现有图像增强算法在处理非均匀光照图像时容易造成局部过度增强或增强不足等问题,提出一种融合特征注意力机制的非均匀光照图像增强算法(ULIEN)。通过学习非线性Gamma函数将非均匀光照图像映射为增强图像,引入亮度注意力图和通道注意力机制分别为图像不同的亮度区域和特征通道分配不同的学习权值,实现不同区域的图像增强。在训练过程中,ULIEN增强网络无需任何参考图像,通过一组无参考损失函数的设计驱动增强网络训练。实验结果表明,经所提算法增强后的图像在主观视觉方面能有效避免细节丢失、伪影、局部过增强或增强不足等问题,在BTMQI、ENIQA、TMQI、UNIQUE客观评价指标上分别可达3.727 0、1.109 6、0.903 0、0.755 7,相较于对照增强算法具有明显优势。 展开更多
关键词 图像增强 均匀光照图像 GAMMA校正 监督学习 注意力机制
在线阅读 下载PDF
多负例对比机制下的跨模态表示学习 被引量:1
7
作者 丁凯旋 陈雁翔 +2 位作者 赵鹏铖 朱玉鹏 盛振涛 《计算机工程与应用》 CSCD 北大核心 2022年第19期184-192,共9页
为了有效地获取到更有区别性的跨模态表示,提出了一种基于多负例对比机制的跨模态表示学习方法--监督对比的跨模态表示学习(supervised contrastive cross-modal representation learning,SCCMRL),并将其应用于视觉模态和听觉模态上。SC... 为了有效地获取到更有区别性的跨模态表示,提出了一种基于多负例对比机制的跨模态表示学习方法--监督对比的跨模态表示学习(supervised contrastive cross-modal representation learning,SCCMRL),并将其应用于视觉模态和听觉模态上。SCCMRL分别通过视觉编码器和音频编码器提取得到视听觉特征,利用监督对比损失让样本数据与其多个负例进行对比,使得相同类别的视听觉特征距离更近,不同类别的视听觉特征距离更远。此外,该方法还引入了中心损失和标签损失来进一步保证跨模态表示间的模态一致性和语义区分性。为了验证SCCMRL方法的有效性,基于SCCMRL方法构建了相应的跨模态检索系统,并结合Sub_URMP和XmediaNet数据集进行了跨模态检索实验。实验结果表明,SCCMRL方法相较于当前常用的跨模态检索方法取得了更高的mAP值,同时验证了多负例对比机制下的跨模态表示学习具有可行性。 展开更多
关键词 跨模态表示学习 多模态特征融合 多负例对比机制 监督对比损失 跨模态检索
在线阅读 下载PDF
基于语义匹配的交互式视频检索框架 被引量:2
8
作者 李华北 胡卫明 罗冠 《自动化学报》 EI CSCD 北大核心 2008年第10期1243-1249,共7页
近年来基于内容的视频检索技术受到人们越来越多的关注.本文提出了一套基于语义匹配的交互式视频检索框架,其贡献主要为以下三方面:1)定义新型的视频高层特征—语义直方图用以描述视频的高层语义信息;2)使用主导集聚类算法建立基于非监... 近年来基于内容的视频检索技术受到人们越来越多的关注.本文提出了一套基于语义匹配的交互式视频检索框架,其贡献主要为以下三方面:1)定义新型的视频高层特征—语义直方图用以描述视频的高层语义信息;2)使用主导集聚类算法建立基于非监督学习的检索机制,用以降低在线计算复杂度和提高检索效率;3)提出新型的相关反馈机制—基于语义的分支反馈,该机制采用分支反馈结构和分支更新策略实现检索性能的提升.实验结果表明了本框架的有效性. 展开更多
关键词 语义匹配直方图 基于非监督学习的检索机制 基于语义的分支反馈
在线阅读 下载PDF
利用多重相似度矩阵增强跨模态哈希检索 被引量:7
9
作者 李志欣 侯传文 谢秀敏 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第6期933-945,共13页
为进一步提升跨模态检索的性能,提出融合多级相似度信息的跨模态哈希检索方法.首先,利用自注意力的方法增强文本特征,并基于不同模态的原始特征和哈希特征构造新的融合特征;然后,在这3种特征的基础上,构造出3个辅助相似度矩阵,并采用加... 为进一步提升跨模态检索的性能,提出融合多级相似度信息的跨模态哈希检索方法.首先,利用自注意力的方法增强文本特征,并基于不同模态的原始特征和哈希特征构造新的融合特征;然后,在这3种特征的基础上,构造出3个辅助相似度矩阵,并采用加权组合的方法构造出第4个辅助相似度矩阵;最后,通过这4个不同的矩阵分别计算不同相似度矩阵之间和不同模态之间的损失函数.这4个不同的矩阵既包括不同的特征形式,也包括不同的矩阵构造方式,因而能更好地表达不同模态的相似度信息,并提升检索性能.在Wikipedia,MIRFlickr和NUS-WIDE 3个基准数据集上的实验结果表明,所提方法在不同码位的mAP值优于许多当前国际先进的方法,具有良好的有效性和鲁棒性. 展开更多
关键词 跨模态检索 多重相似度矩阵 监督学习 卷积神经网络 自注意力机制
在线阅读 下载PDF
基于双注意力擦除和注意力信息聚合的弱监督目标检测 被引量:3
10
作者 宋鹏鹏 龚声蓉 +2 位作者 钟珊 周立凡 凤黄浩 《计算机工程》 CAS CSCD 北大核心 2023年第3期113-120,127,共9页
现有的弱监督检测方法主要采用多示例检测网络,但在这些方法中应用分类特征提取网络易使目标尤其是非刚性目标的检测结果收敛到目标最显著局部区域。提出一种基于双注意力擦除和注意力信息聚合的端到端的弱监督检测框架DAENet。双注意... 现有的弱监督检测方法主要采用多示例检测网络,但在这些方法中应用分类特征提取网络易使目标尤其是非刚性目标的检测结果收敛到目标最显著局部区域。提出一种基于双注意力擦除和注意力信息聚合的端到端的弱监督检测框架DAENet。双注意力擦除模块的目的在于擦除生成的最显著性局部前景区域和部分背景区域,以此来扩展目标显著性区域,使网络能够尽可能地关注目标整体,从而更好地捕获目标整体区域。此外,为准确定位不同目标区域并精确生成注意力擦除掩码,提出注意力信息聚合模块,该模块可提取通道的全局特征和局部特征,并引入空间依赖性进一步提高检测精度。通过将双注意力擦除和注意力信息聚合进行协同工作,从而更好地提高弱监督检测性能。在PASCAL VOC 2007和VOC 2012数据集上的实验结果表明,DAENet框架在两个数据集上的检测精度分别达到50.5%和47.4%,相比基准模型,在部分非刚性目标上的检测精度提高了约5%~20%。 展开更多
关键词 监督目标检测 擦除策略 注意力机制 刚性目标 深度学习
在线阅读 下载PDF
融合CNN和二进制生成对抗网络的多元时间序列检索 被引量:1
11
作者 汤丽君 关东海 +2 位作者 汪子璇 袁伟伟 燕雪峰 《小型微型计算机系统》 CSCD 北大核心 2023年第2期281-287,共7页
多元时间序列在日常生活中普遍存在,给定当前的时间序列片段,如何高效且精确地从历史时间片段中找出其相似的时间片段极为重要.本文提出了一种全新的基于CNN和深度非监督二进制生成对抗网络(UCBGAN)来进行多元时间序列检索,它可以有效... 多元时间序列在日常生活中普遍存在,给定当前的时间序列片段,如何高效且精确地从历史时间片段中找出其相似的时间片段极为重要.本文提出了一种全新的基于CNN和深度非监督二进制生成对抗网络(UCBGAN)来进行多元时间序列检索,它可以有效地获取多元时间序列的二进制表示.该网络由3部分构成—一个解码器,一个编码器和一个鉴别器,其中鉴别器和编码器除了最后一层外,共享参数.此外,本文引入了时序相似矩阵,通过构建时序相似矩阵,能进一步提高二进制编码的可鉴别性.在训练过程中,本文引入了对抗损失,相似对损失和重构损失.在多个数据集上的实验结果表明,该方法能有效提高多元时间序列检索的准确度.所以,该方法对于多元时间序列检索是有效的. 展开更多
关键词 多元时间序列检索 监督学习 二进制编码 卷积神经网络 生成对抗式学习
在线阅读 下载PDF
自注意力相似度迁移跨模态哈希网络
12
作者 梁焕 王海荣 王栋 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期615-622,共8页
为进一步提升跨模态检索性能,提出自注意力相似度迁移跨模态哈希网络模型。设计了一种通道空间混合自注意力机制强化关注图像的关键信息,并使用共同注意力方法加强模态信息交互,提高特征学习质量;为在哈希空间重构相似关系,采用迁移学... 为进一步提升跨模态检索性能,提出自注意力相似度迁移跨模态哈希网络模型。设计了一种通道空间混合自注意力机制强化关注图像的关键信息,并使用共同注意力方法加强模态信息交互,提高特征学习质量;为在哈希空间重构相似关系,采用迁移学习的方法利用实值空间相似度引导哈希码的生成。在3个常用的数据集MIRFLICKR-25K、IAPR TC-12和MSCOCO上与深度跨模态哈希(DCMH)、成对关系引导的深度哈希(PRDH)、跨模态汉明哈希(CMHH)等优秀方法进行对比实验,结果显示哈希码长度为64 bit的条件下,所提模型在3个数据集图像检索文本任务的平均精确度均值(MAP)达到72.3%,文本检索图像任务的MAP达到70%,高于对比方法。 展开更多
关键词 跨模态检索 哈希学习 注意力机制 迁移学习 监督学习
在线阅读 下载PDF
河南社会科学二○一○年总目录
13
《河南社会科学》 CSSCI 北大核心 2010年第6期230-233,共4页
关键词 侦查监督机制 物质文化遗产保护 诉讼监督 渎职侵权犯罪 法院调解 刑罚执行 社会科学 刑事公诉 交易费用经济学 乡下人进城 河南 目录 检索工具
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部