植被净初级生产力(Net Primary Productivity,NPP)是反映陆地生态系统碳封存能力和环境变化的直接指标,受气候变化与人类活动的共同影响,且在不同地形上有分异性。然而,人类活动及地形对秦巴山区植被NPP变化的影响研究尚且不足。采用CAS...植被净初级生产力(Net Primary Productivity,NPP)是反映陆地生态系统碳封存能力和环境变化的直接指标,受气候变化与人类活动的共同影响,且在不同地形上有分异性。然而,人类活动及地形对秦巴山区植被NPP变化的影响研究尚且不足。采用CASA模型,综合利用线性趋势分析、转移矩阵和残差分析等方法研究了秦巴山区2001—2022年长时序NPP时空动态和地形效应,并进一步探讨了气候变化和人类活动对NPP变化的相对贡献率,主要结论如下:①秦巴山区2001—2022年的NPP空间分布表现为中间高,四周低,均值为585.11g C/m^(2),并以4.30g C m^(-2)a^(-1)的速度增加。②林地有最高的年NPP均值,而退耕还林区域具有最高的NPP增长速率(8.17g C m^(-2)a^(-1)),表明退耕还林是秦巴山区NPP增长的有效措施;③NPP随海拔和坡度变化具有明显的分异性。在海拔3400m以下,植被NPP随着高程的增加而增加,而当高程超过3400m时,植被NPP显著减少,坡度在10°—40°范围内植被NPP的多年均值和变化趋势较高;④秦巴山区NPP变化是气候变化和人类活动共同作用的结果,二者对NPP变化的相对贡献率分别为37.81%和62.19%,其中人类活动导致陇南等生态脆弱区NPP显著提高。展开更多
以陕西省为研究对象,运用遥感和GIS手段,结合MODIS/NDVI数据、气象数据以及植被类型数据,应用CASA模型估算得到陕西省2013年的NPP数据。结果表明,2013年陕西省NPP总量为8.87×107g C/a,平均值为469.58 g C/(m2·a),NPP最高值为7...以陕西省为研究对象,运用遥感和GIS手段,结合MODIS/NDVI数据、气象数据以及植被类型数据,应用CASA模型估算得到陕西省2013年的NPP数据。结果表明,2013年陕西省NPP总量为8.87×107g C/a,平均值为469.58 g C/(m2·a),NPP最高值为723.06 g C/(m2·a),其空间分布特点表现为显著的纬度分布,南高北低,陕南>关中>陕北;NPP时间分布表现为明显的季节变化,呈单峰型曲线;植被类型NPP表现为阔叶林>针叶林>耕地>草地,并且各植被类型最大值出现月份不一致。展开更多
为提高小麦条锈病的遥感监测精度,该研究利用分数阶微分能够突出光谱的细微信息以及描述光谱数据间微小差异的优势,在对条锈病胁迫下小麦冠层光谱数据进行分数阶微分处理的基础上,构建了两波段和三波段分数阶微分光谱指数,并将其应用于...为提高小麦条锈病的遥感监测精度,该研究利用分数阶微分能够突出光谱的细微信息以及描述光谱数据间微小差异的优势,在对条锈病胁迫下小麦冠层光谱数据进行分数阶微分处理的基础上,构建了两波段和三波段分数阶微分光谱指数,并将其应用于小麦条锈病的遥感探测。研究结果表明,1.2阶次微分光谱与小麦条锈病冠层病情严重度的相关性最高,较原始反射率光谱、一阶微分光谱和二阶微分光谱分别提高了20.9%、3.9%和20.5%;基于分数阶微分光谱指数的最优分数阶次及其对应波长构建的三波段分数阶微分光谱指数对小麦条锈病的探测能力优于两波段分数阶微分光谱指数,其中分数阶微分光化学指数与冠层病情严重度的相关系数达到0.875;以分数阶微分光谱指数为自变量构建的高斯过程回归(Gaussian Process Regression,GPR)模型对小麦条锈病冠层病情严重度的预测精度优于反射率光谱指数,其训练数据集及验证数据集病情指数(Disease Index,DI)预测值和实测值间的决定系数较反射率光谱指数分别提高了3.8%和19.1%。研究结果可为进一步实现作物健康状况大面积高精度遥感监测提供参考。展开更多
文摘植被净初级生产力(Net Primary Productivity,NPP)是反映陆地生态系统碳封存能力和环境变化的直接指标,受气候变化与人类活动的共同影响,且在不同地形上有分异性。然而,人类活动及地形对秦巴山区植被NPP变化的影响研究尚且不足。采用CASA模型,综合利用线性趋势分析、转移矩阵和残差分析等方法研究了秦巴山区2001—2022年长时序NPP时空动态和地形效应,并进一步探讨了气候变化和人类活动对NPP变化的相对贡献率,主要结论如下:①秦巴山区2001—2022年的NPP空间分布表现为中间高,四周低,均值为585.11g C/m^(2),并以4.30g C m^(-2)a^(-1)的速度增加。②林地有最高的年NPP均值,而退耕还林区域具有最高的NPP增长速率(8.17g C m^(-2)a^(-1)),表明退耕还林是秦巴山区NPP增长的有效措施;③NPP随海拔和坡度变化具有明显的分异性。在海拔3400m以下,植被NPP随着高程的增加而增加,而当高程超过3400m时,植被NPP显著减少,坡度在10°—40°范围内植被NPP的多年均值和变化趋势较高;④秦巴山区NPP变化是气候变化和人类活动共同作用的结果,二者对NPP变化的相对贡献率分别为37.81%和62.19%,其中人类活动导致陇南等生态脆弱区NPP显著提高。
文摘以陕西省为研究对象,运用遥感和GIS手段,结合MODIS/NDVI数据、气象数据以及植被类型数据,应用CASA模型估算得到陕西省2013年的NPP数据。结果表明,2013年陕西省NPP总量为8.87×107g C/a,平均值为469.58 g C/(m2·a),NPP最高值为723.06 g C/(m2·a),其空间分布特点表现为显著的纬度分布,南高北低,陕南>关中>陕北;NPP时间分布表现为明显的季节变化,呈单峰型曲线;植被类型NPP表现为阔叶林>针叶林>耕地>草地,并且各植被类型最大值出现月份不一致。
文摘为提高小麦条锈病的遥感监测精度,该研究利用分数阶微分能够突出光谱的细微信息以及描述光谱数据间微小差异的优势,在对条锈病胁迫下小麦冠层光谱数据进行分数阶微分处理的基础上,构建了两波段和三波段分数阶微分光谱指数,并将其应用于小麦条锈病的遥感探测。研究结果表明,1.2阶次微分光谱与小麦条锈病冠层病情严重度的相关性最高,较原始反射率光谱、一阶微分光谱和二阶微分光谱分别提高了20.9%、3.9%和20.5%;基于分数阶微分光谱指数的最优分数阶次及其对应波长构建的三波段分数阶微分光谱指数对小麦条锈病的探测能力优于两波段分数阶微分光谱指数,其中分数阶微分光化学指数与冠层病情严重度的相关系数达到0.875;以分数阶微分光谱指数为自变量构建的高斯过程回归(Gaussian Process Regression,GPR)模型对小麦条锈病冠层病情严重度的预测精度优于反射率光谱指数,其训练数据集及验证数据集病情指数(Disease Index,DI)预测值和实测值间的决定系数较反射率光谱指数分别提高了3.8%和19.1%。研究结果可为进一步实现作物健康状况大面积高精度遥感监测提供参考。