传统有限元法对大坝-不规则地基-库水系统进行建模时存在一定的局限性。基于ABAQUS二次开发接口,实现了比例边界有限元方法(scaled boundary finite element method,SBFEM)与八叉树网格的结合,建立了一种考虑真实地形的高拱坝-不规则地...传统有限元法对大坝-不规则地基-库水系统进行建模时存在一定的局限性。基于ABAQUS二次开发接口,实现了比例边界有限元方法(scaled boundary finite element method,SBFEM)与八叉树网格的结合,建立了一种考虑真实地形的高拱坝-不规则地基-库水系统自动建模方法。利用构建的八叉树比例边界有限元法对某重力坝地震响应进行了数值验证。随后对NG5拱坝系统分别基于平整地基和不规则地基进行线弹性和非线性动力响应分析。结果表明:在地震作用下,相较于简化的平整地基拱坝系统,不规则地基拱坝系统坝顶与坝底横河向相对位移以及第一主应力峰值变化较大,分别增加了73.5%和103.6%;考虑拱坝横缝以及材料非线性的情况下,坝顶与坝底横河向相对位移以及顺河向相对位移和相对速度分别增加了43.9%、32.0%和56.6%,同时边缝的法向开度增加尤为显著,增加了388.9%和381.8%,开度峰值增加了105%,在应力和损伤方面,第一主应力峰值增加了81.6%,损伤较大的区域也沿着坝体底部进行了扩展。展开更多
传统声学有限元法(finite element method,FEM)难以准确表征温升效应引起的主变室大空间空气介质参数变化,导致温度场-声场耦合作用下变电站主变压器室噪声场计算误差过大。在声学FEM算法基础上,引入计算流体力学(computational fluid d...传统声学有限元法(finite element method,FEM)难以准确表征温升效应引起的主变室大空间空气介质参数变化,导致温度场-声场耦合作用下变电站主变压器室噪声场计算误差过大。在声学FEM算法基础上,引入计算流体力学(computational fluid dynamics,CFD),提取大空间主变室的复杂空间介质参量,并对波动积分方程进行改进,提出一种基于改进声学FEM的主变室内噪声场求解算法。首先,建立温度场影响下的主变室流变模型,采用CFD表征主变室大空间温度场离散空间介质参量;然后,基于流-声网格映射理论,将温度场离散空间介质参量与声音网格进行映射,建立修正大空间空气介质参数后的声学FEM积分方程;最后,基于常规Gauss数值积分法和引入Kirchhoff-Helmholtz方程,对修正声学FEM积分方程进行联合求解。该算法在西安110 kV昌明变电站1号主变室噪声场的求解分析中得到了成功应用,与实测值误差为2.168%。展开更多
文摘传统有限元法对大坝-不规则地基-库水系统进行建模时存在一定的局限性。基于ABAQUS二次开发接口,实现了比例边界有限元方法(scaled boundary finite element method,SBFEM)与八叉树网格的结合,建立了一种考虑真实地形的高拱坝-不规则地基-库水系统自动建模方法。利用构建的八叉树比例边界有限元法对某重力坝地震响应进行了数值验证。随后对NG5拱坝系统分别基于平整地基和不规则地基进行线弹性和非线性动力响应分析。结果表明:在地震作用下,相较于简化的平整地基拱坝系统,不规则地基拱坝系统坝顶与坝底横河向相对位移以及第一主应力峰值变化较大,分别增加了73.5%和103.6%;考虑拱坝横缝以及材料非线性的情况下,坝顶与坝底横河向相对位移以及顺河向相对位移和相对速度分别增加了43.9%、32.0%和56.6%,同时边缝的法向开度增加尤为显著,增加了388.9%和381.8%,开度峰值增加了105%,在应力和损伤方面,第一主应力峰值增加了81.6%,损伤较大的区域也沿着坝体底部进行了扩展。