期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
基于双向编码转换器和文本卷积神经网络的微博评论情感分类 被引量:7
1
作者 徐凯旋 李宪 潘亚磊 《复杂系统与复杂性科学》 CAS CSCD 北大核心 2021年第2期89-94,共6页
对微博多分句的评论,ELMo-Text CNN、GPT等模型不能准确提取文本上下文联系,导致分类效果不理想。为了解决此问题,采用BERT-Text CNN模型,利用BERT独特自注意力机制的双向编码转换器结构获得具有句子全局特征的字向量,将字向量输入到Tex... 对微博多分句的评论,ELMo-Text CNN、GPT等模型不能准确提取文本上下文联系,导致分类效果不理想。为了解决此问题,采用BERT-Text CNN模型,利用BERT独特自注意力机制的双向编码转换器结构获得具有句子全局特征的字向量,将字向量输入到Text CNN中,利用Text CNN捕获局部特征的能力,最终提取语义、语序以及上下文联系等高阶特征,解决了模型不能准确获取文本上下文联系的问题,实现了高准确率的微博评论细粒度情感分类。同时为验证该模型的优势,与现有模型进行比较,在simplifyweibo_4_moods数据集上测试结果显示BERT-Text CNN模型在准确率、召回率以及F1指标方面均有提升。 展开更多
关键词 情感分类 双向编码转换器 文本卷积神经网络 自注意力机制
在线阅读 下载PDF
滚动轴承的退化特征信息融合与剩余寿命预测
2
作者 张建宇 王留震 +1 位作者 肖勇 马雅楠 《中国机械工程》 北大核心 2025年第7期1553-1561,共9页
针对滚动轴承剩余寿命预测的需求,提出一种基于稀疏自编码器(SAE)和双向长短期记忆网络(BiLSTM)的预测模型。以滚动轴承全寿命振动数据为研究对象,通过构建反双曲变换的状态退化指标和频域谐波退化因子形成退化指标集,并利用SAE特征融... 针对滚动轴承剩余寿命预测的需求,提出一种基于稀疏自编码器(SAE)和双向长短期记忆网络(BiLSTM)的预测模型。以滚动轴承全寿命振动数据为研究对象,通过构建反双曲变换的状态退化指标和频域谐波退化因子形成退化指标集,并利用SAE特征融合提取关键特征,消除冗余信息。同时,结合BiLSTM模型捕捉时序特征,实现全周期寿命预测。实验结果表明,所提模型优于支持向量回归、极限学习机、卷积神经网络等模型,预测误差更小,泛化能力更强。 展开更多
关键词 稀疏自编码特征融合 双向长短期记忆网络预测模型 滚动轴承 反双曲特征指标 频域谐波退化因子
在线阅读 下载PDF
柴油机时频图像双向二维特征编码与故障识别 被引量:5
3
作者 岳应娟 王旭 蔡艳平 《内燃机学报》 EI CAS CSCD 北大核心 2018年第4期377-383,共7页
针对柴油机故障特征提取困难的问题,提出一种基于时频图像双向二维特征编码识别的柴油机智能故障诊断方法.将内燃机故障诊断问题转化为故障信号时频图像的识别问题,分别利用短时傅里叶变换、小波包、魏格纳分布(WVD)、伪魏格纳分布(PWVD... 针对柴油机故障特征提取困难的问题,提出一种基于时频图像双向二维特征编码识别的柴油机智能故障诊断方法.将内燃机故障诊断问题转化为故障信号时频图像的识别问题,分别利用短时傅里叶变换、小波包、魏格纳分布(WVD)、伪魏格纳分布(PWVD)与平滑伪魏格纳分布(SPWVD)生成柴油机振动时频图像,提出了自适应匹配追踪(AMP)算法与魏格纳相结合的AMP-WVD时频表征方法;为进一步获取包含于柴油机振动时频图像内部的低维特征参量,在二维非负矩阵分解的基础上提出了双向二维非负矩阵分解(TD2DNMF)算法,将数据矩阵行、列维信息融合到一个判别分析框架中,将不同类别的数据信息并行运算,对柴油机时频图像样本进行特征编码,并将支持向量机作为分类器,实现了时频图像的自动分类识别.在6135G型柴油机上模拟了8种不同气门状态,利用时频图像双向二维特征编码与故障识别方法进行柴油机运行状态判别,结果表明:AMP-WVD时频图像可描述柴油机运行状态信息,各时频分量的物理意义更加明确;TD2DNMF方法有较好的特征提取能力,可提取柴油机故障信息. 展开更多
关键词 柴油机 匹配追踪 双向二维非负矩阵分解 特征编码 时频分布
在线阅读 下载PDF
基于改进SAE和双向LSTM的滚动轴承RUL预测方法 被引量:27
4
作者 康守强 周月 +2 位作者 王玉静 谢金宝 MIKULOVICH Vladimir Ivanovich 《自动化学报》 EI CAS CSCD 北大核心 2022年第9期2327-2336,共10页
针对稀疏自动编码器(Sparse auto encoder,SAE)采用sigmoid激活函数容易造成梯度消失的问题,用一种新的Tan函数替代原有的sigmoid函数;针对SAE采用Kullback-Leibler(KL)散度进行稀疏性约束在回归预测方面的局限性,以dropout机制替代KL... 针对稀疏自动编码器(Sparse auto encoder,SAE)采用sigmoid激活函数容易造成梯度消失的问题,用一种新的Tan函数替代原有的sigmoid函数;针对SAE采用Kullback-Leibler(KL)散度进行稀疏性约束在回归预测方面的局限性,以dropout机制替代KL散度实现网络的稀疏性.利用改进SAE对滚动轴承振动信号进行无监督深层特征自适应提取,无需人工设计标签进行有监督微调.同时,考虑到滚动轴承剩余使用寿命(Remaining useful life,RUL)预测方法一般仅考虑过去信息而忽略未来信息,引入双向长短时记忆网络(Bi-directional long short-term memory,Bi-LSTM)构建滚动轴承RUL的预测模型.在2个轴承数据集上的实验结果均表明,所提基于改进SAE和Bi-LSTM的滚动轴承RUL预测方法不仅可以提高模型的收敛速度而且具有较低的预测误差. 展开更多
关键词 滚动轴承 稀疏自动编码 无监督特征提取 双向长短时记忆网络 剩余使用寿命预测
在线阅读 下载PDF
基于深度特征和Seq2Seq模型的网络态势预测方法 被引量:15
5
作者 林志兴 王立可 《计算机应用》 CSCD 北大核心 2020年第8期2241-2247,共7页
针对目前大多数的网络态势预测方法不能挖掘数据中的深度信息且需要手动提取与构造特征的问题,提出了深度特征网络态势预测方法DFS-Seq2Seq。首先将网络流、日志和系统事件等产生的数据进行清洗处理,使用深度特征融合算法自动合成深度... 针对目前大多数的网络态势预测方法不能挖掘数据中的深度信息且需要手动提取与构造特征的问题,提出了深度特征网络态势预测方法DFS-Seq2Seq。首先将网络流、日志和系统事件等产生的数据进行清洗处理,使用深度特征融合算法自动合成深度关系特征,然后采用自动编码器对合成的特征进行提取,最后使用长短期记忆网络(LSTM)构建Seq2Seq模型对数据进行预测。通过设计缜密的实验在公开数据集Kent2016上对所提方法进行验证,结果显示在深度为2时与支持向量机(SVM)、贝叶斯、随机森林(RF)和LSTM这四种分类模型相比,其召回率分别提升了7.4%、11.5%、6.5%、3.0%。实验结果表明DFS-Seq2Seq可以在实际应用中有效地识别网络身份验证中的危险事件,对网络态势作出有效的预测。 展开更多
关键词 网络态势 深度特征合成 自动编码 Seq2Seq模型 双向长短期记忆网络
在线阅读 下载PDF
需求驱动的云平台产品关键设计特征识别方法 被引量:5
6
作者 苏兆婧 余隋怀 +3 位作者 初建杰 于明玖 宫静 黄悦欣 《计算机集成制造系统》 EI CSCD 北大核心 2021年第12期3604-3613,共10页
为完善云服务平台产品设计知识发现系统,同时进一步提升需求与服务的匹配效率,提出一种基于转换器的双向编码表征(BERT)和随机Lasso的产品关键设计特征识别方法。首先,实验采用真实产品用户反馈数据集并对其进行人工标注,以BERT预训练... 为完善云服务平台产品设计知识发现系统,同时进一步提升需求与服务的匹配效率,提出一种基于转换器的双向编码表征(BERT)和随机Lasso的产品关键设计特征识别方法。首先,实验采用真实产品用户反馈数据集并对其进行人工标注,以BERT预训练语言模型为基础,建立输出层以训练设计领域命名实体识别模型,实现对显性设计特征的自动识别。实验表明,所提方法可以实现较好的性能,精确率、召回率、F1分数分别为90.55%、97.16%和93.68%。同时,提出一种知识迁移思想,在当前大数据环境下,利用随机Lasso算法挖掘其中蕴含的关键设计特征并加以重用,实现了对隐性设计特征的精确定位。 展开更多
关键词 工业设计 用户需求 基于转换器的双向编码表征 命名实体识别 随机Lasso 产品设计
在线阅读 下载PDF
基于SE-SAE特征融合和BiLSTM的锂电池寿命预测 被引量:3
7
作者 叶震 李琨 +1 位作者 李梦男 高宏宇 《电源技术》 CAS 北大核心 2023年第6期745-749,共5页
预测锂电池剩余使用寿命(RUL)时,针对电池外部特性参量电流、电压等单一的健康因子(HI)对电池退化特性无法完整覆盖的问题,提出一种结合通道注意力机制(SENet)和栈式自编码(SAE)进行特征融合并引入双向长短期记忆(BiLSTM)实现锂电池RUL... 预测锂电池剩余使用寿命(RUL)时,针对电池外部特性参量电流、电压等单一的健康因子(HI)对电池退化特性无法完整覆盖的问题,提出一种结合通道注意力机制(SENet)和栈式自编码(SAE)进行特征融合并引入双向长短期记忆(BiLSTM)实现锂电池RUL的预测方法。充分提取锂电池电压、电流等HI。利用SAE对多个锂电池HI特征进行特征融合,并结合SENet通道注意力机制,增加重要特征在提取过程中的表现能力。利用BiLSTM网络对融合HI进行训练预测。采用NASA和马里兰大学计算机辅助寿命周期工程中心(CALCE)锂电池数据集进行验证,训练预测数据均采用50%的比例划分,预测结果的均方根误差(RMSE)平均值达到0.017。 展开更多
关键词 SENet 栈式自编码 特征融合 双向长短期记忆网络 电池寿命预测
在线阅读 下载PDF
模拟视觉系统的稀疏编码神经网络模型
8
作者 邹琪 罗四维 《信号处理》 CSCD 2003年第z1期224-227,共4页
神经生物学研究表明,视感知系统V1层神经元的感受野对刺激图像采取稀疏表示的策略.本文模拟视感知系统对视觉信息的处理提出了稀疏编码的神经网络模型.该模型用快速ICA算法得到的特征基模拟感受野,反馈网络的输出模拟简单细胞的响应.对... 神经生物学研究表明,视感知系统V1层神经元的感受野对刺激图像采取稀疏表示的策略.本文模拟视感知系统对视觉信息的处理提出了稀疏编码的神经网络模型.该模型用快速ICA算法得到的特征基模拟感受野,反馈网络的输出模拟简单细胞的响应.对自然图像的编码实验说明该模型在生物学上的合理性和计算上的可行性. 展开更多
关键词 视神经科学 独立分量分析 特征 双向神经网络 稀疏编码
在线阅读 下载PDF
基于双语义双向对齐VAE的广义零样本学习
9
作者 史彩娟 石泽 +1 位作者 闫巾玮 毕阳阳 《图学学报》 CSCD 北大核心 2023年第3期521-530,共10页
广义零样本学习(GZSL)旨在利用视觉特征和语义信息之间的关系来同时识别可见类和不可见类。现有的大部分方法使用生成模型生成不可见类的伪视觉特征,但一般采用单向对齐VAE且语义原型种类单一,导致不可见类的语义信息非常有限。因此,提... 广义零样本学习(GZSL)旨在利用视觉特征和语义信息之间的关系来同时识别可见类和不可见类。现有的大部分方法使用生成模型生成不可见类的伪视觉特征,但一般采用单向对齐VAE且语义原型种类单一,导致不可见类的语义信息非常有限。因此,提出了一种基于双语义双向对齐变分自编码器的广义零样本学习模型,首先采用户定义的属性和词向量两种语义原型,基于双向对齐的VAE分别稳定地生成2种伪视觉特征来获取丰富的语义信息;然后,设计了特征融合模块对2种伪视觉特征进行有效融合,并去除其中的冗余信息,增强伪视觉特征表示;最后,采用分类正则化进一步增强伪视觉特征的类别独立性。在3个基准数据集上进行了大量实验,并与相关算法模型进行了比较,结果表明了该模型的有效性。 展开更多
关键词 广义零样本学习 生成模型 双语义原型 双向对齐变分自编码 特征融合增强
在线阅读 下载PDF
利用BERT和覆盖率机制改进的HiNT文本检索模型 被引量:4
10
作者 邸剑 刘骏华 曹锦纲 《智能系统学报》 CSCD 北大核心 2024年第3期719-727,共9页
为有效提升文本语义检索的准确度,本文针对当前文本检索模型衡量查询和文档的相关性时不能很好地解决文本歧义和一词多义等问题,提出一种基于改进的分层神经匹配模型(hierarchical neural matching model,HiNT)。该模型先对文档的各个... 为有效提升文本语义检索的准确度,本文针对当前文本检索模型衡量查询和文档的相关性时不能很好地解决文本歧义和一词多义等问题,提出一种基于改进的分层神经匹配模型(hierarchical neural matching model,HiNT)。该模型先对文档的各个段提取关键主题词,然后用基于变换器的双向编码器(bidirectional encoder representations from transformers,BERT)模型将其编码为多个稠密的语义向量,再利用引入覆盖率机制的局部匹配层进行处理,使模型可以根据文档的局部段级别粒度和全局文档级别粒度进行相关性计算,提高检索的准确率。本文提出的模型在MS MARCO和webtext2019zh数据集上与多个检索模型进行对比,取得了最优结果,验证了本文提出模型的有效性。 展开更多
关键词 基于变换器的双向编码 分层神经匹配模型 覆盖率机制 文本检索 语义表示 特征提取 自然语言处理 相似度 多粒度
在线阅读 下载PDF
基于情绪分析的生产安全事故政府责任公众感知偏差研究
11
作者 张羽 周旭 梁琦 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第8期203-209,共7页
为强化政府安全生产监督及行政问责公正机制,提升生产安全事故协同治理能力,利用文本挖掘技术从个体和场域2个层面出发,探索生产安全事故政府责任的公众感知偏差形成机理和影响因素。通过公众责任感知双向编码转换器(BERT-PPR)预测事故... 为强化政府安全生产监督及行政问责公正机制,提升生产安全事故协同治理能力,利用文本挖掘技术从个体和场域2个层面出发,探索生产安全事故政府责任的公众感知偏差形成机理和影响因素。通过公众责任感知双向编码转换器(BERT-PPR)预测事故微博评论的情绪和归责类型,对比事故调查结果得到政府责任的公众感知偏差,并基于二元逻辑回归考察事故信息和微博报道对感知偏差的影响。研究结果表明:采用政府形象框架以及调查结果公布阶段引发政府舆情危机的风险更高;责任人宣判阶段公众更易误判政府有责。行业、阶段、等级、形式、框架因素对生产安全事故政府责任公众感知偏差的影响不同,应采取对应措施,进而纠正相关偏差。研究结果可为安全生产领域内相关政策调整提供参考。 展开更多
关键词 生产安全事故 政府责任 感知偏差 舆情治理 情绪分析 双向编码转换器(BERT)
在线阅读 下载PDF
知识增强的BERT短文本分类算法 被引量:3
12
作者 傅薛林 金红 +2 位作者 郑玮浩 张奕 陶小梅 《计算机工程与设计》 北大核心 2024年第7期2027-2033,共7页
为解决短文本信息不全且缺乏领域知识导致关键信息难以充分挖掘而造成的深度学习模型分类性能不足等问题,提出一种知识增强的双向编码器表示转换器(BERT)短文本分类算法(KE-BERT)。提出一种建模短文本与领域知识的方法,通过知识图谱进... 为解决短文本信息不全且缺乏领域知识导致关键信息难以充分挖掘而造成的深度学习模型分类性能不足等问题,提出一种知识增强的双向编码器表示转换器(BERT)短文本分类算法(KE-BERT)。提出一种建模短文本与领域知识的方法,通过知识图谱进行领域知识的引入;提出一种知识适配器,通过知识适配器在BERT的各个编码层之间进行知识增强。通过在公开的短文本数据集上,将KE-BERT与其它深度学习模型相比较,该模型的F1均值和准确率均值达到93.46%和91.26%,结果表明了所提模型性能表现良好。 展开更多
关键词 短文本分类 深度学习 双向编码器表示转换器 知识图谱 领域知识 知识适配器 知识增强
在线阅读 下载PDF
基于数据增强SDAE-BiGRU的交流接触器剩余电寿命预测 被引量:1
13
作者 邢朝健 刘树鑫 +3 位作者 高书豫 刘洋 李静 曹云东 《高电压技术》 EI CAS CSCD 北大核心 2024年第11期4990-5004,共15页
针对目前交流接触器剩余电寿命存在单一特征预测精度低、未充分考虑开断前后的关联性和忽略了长时间序列特点的问题,该文提出基于数据增强堆叠降噪自动编码器-双向门控循环单元(stacked denoised autoencod-er-bidirection gated recurr... 针对目前交流接触器剩余电寿命存在单一特征预测精度低、未充分考虑开断前后的关联性和忽略了长时间序列特点的问题,该文提出基于数据增强堆叠降噪自动编码器-双向门控循环单元(stacked denoised autoencod-er-bidirection gated recurrent unit,SDAE-BiGRU)的交流接触器剩余电寿命预测方法。首先,通过交流接触器全寿命试验提取特征参量,采用近邻成分分析(neighborhood component analysis,NCA)和斯皮尔曼等级相关系数选择最优特征子集,来有效表征电寿命退化信息。然后,对最优特征子集进行数据增强,充分考虑前后状态的关联性,并利用SDAE对增强后的特征信息进行融合来降低输入维度。最后,将交流接触器剩余电寿命视为长时序问题,通过BiGRU进行时序预测。实例分析表明,该模型比循环神经网络(recurrent neural network,RNN)、长短期记忆网络(long short-term memory,LSTM)、GRU、BiGRU和SDAE-BiGRU模型预测效果好,平均有效精度达到96.68%,有效证明了时序预测模型应用在电器设备剩余寿命预测领域中的可行性。 展开更多
关键词 交流接触器 特征选择 数据增强 堆叠降噪自动编码 双向门控循环单元
在线阅读 下载PDF
基于BiLSTM-DAE的多家族恶意域名检测算法 被引量:2
14
作者 张咪 彭建山 《计算机应用与软件》 北大核心 2024年第10期319-324,共6页
针对现有恶意域名检测算法对于家族恶意域名检测精度不高和实时性不强的问题,提出一种基于BiLSTM-DAE的恶意域名检测算法。通过利用双向长短时记忆神经网络(Bi-directional Long Short Term Memory,BiLSTM)提取域名字符组合的上下文序... 针对现有恶意域名检测算法对于家族恶意域名检测精度不高和实时性不强的问题,提出一种基于BiLSTM-DAE的恶意域名检测算法。通过利用双向长短时记忆神经网络(Bi-directional Long Short Term Memory,BiLSTM)提取域名字符组合的上下文序列特征,并结合深度自编码网络(Deep Auto-Encoder,DAE)逐层压缩感知提取类内有共性和类间有区分性的强字符构词特征并进行分类。实验结果表明,与当前主流恶意域名检测算法相比,该算法在保持检测开销较小的基础上,具有更高的检测精度。 展开更多
关键词 恶意域名检测 深度自编码网络 双向长短时记忆神经网络 构词特征
在线阅读 下载PDF
云边协同联邦计算方法在铁路信号系统故障检测中的应用
15
作者 王延峰 谢泽会 《信息安全研究》 CSCD 北大核心 2024年第8期753-759,共7页
铁路信号系统是当下社会交通运力的主要承载系统,其对安全性有极高的要求.而由于铁路信号系统容易受到外界多种因素影响,易出现故障,需要设计一种针对铁路信号系统的实时故障检测方案,进而才能采取有效的维护措施.不同于传统的机器学习(... 铁路信号系统是当下社会交通运力的主要承载系统,其对安全性有极高的要求.而由于铁路信号系统容易受到外界多种因素影响,易出现故障,需要设计一种针对铁路信号系统的实时故障检测方案,进而才能采取有效的维护措施.不同于传统的机器学习(ML)故障检测方法,采用双向编码器表示转换器(BERT)深度学习(DL)模型进行实时的智能故障检测.该模型能够在处理故障检测任务时获取双向上下文的理解,从而更准确地捕捉句子中的语义关系,使得其对故障描述的理解更为精准.采用了云边协同的联邦计算方法,使得各铁路运营单位的数据可以在本地进行初步处理,然后将汇总后的梯度上传至云端进行模型训练,最终将训练得到的模型参数发送回各边缘设备,实现模型的更新,突破了模型的训练数据分散的限制,同时允许多个铁路运营单位在保持数据隐私的前提下共同训练BERT模型.研究结果表明,采用联邦边云计算方法进行BERT模型训练,在解决数据保密性问题的同时,有效提升了轨道交通故障检测的准确性与可靠性,优于目前在铁路信号系统领域已有的故障检测方案. 展开更多
关键词 铁路信号系统 故障检测 云边协同计算 联邦学习 双向编码表示转换器
在线阅读 下载PDF
基于对抗迁移的复合材料检测领域命名实体识别 被引量:4
16
作者 李洋 蔡红珍 +1 位作者 邢林林 苏展鹏 《科学技术与工程》 北大核心 2022年第30期13370-13377,共8页
命名实体识别(named entity recognition,NER)可整合复合材料检测领域相关数据精准提取关键实体信息,促进产业信息化,为行业发展提供技术支撑。针对复合材料检测领域专业名词过多及边界混淆等问题,提出了一种基于对抗训练(adversarial t... 命名实体识别(named entity recognition,NER)可整合复合材料检测领域相关数据精准提取关键实体信息,促进产业信息化,为行业发展提供技术支撑。针对复合材料检测领域专业名词过多及边界混淆等问题,提出了一种基于对抗训练(adversarial training)和BERT(bidirectional encoder representations from transformers)嵌入相结合的领域命名实体识别模型(BERT-AdBC)。首先,复合材料检测领域数据规模较小,BERT嵌入增强了领域迁移能力,通过融合字向量获取充分的语义表示;其次,领域语句繁杂冗长,引入自注意力机制结合双向长短期记忆网络(Bi-LSTM)模型增强了上下文之间语义关系的获取;最后,对抗训练利用分词任务与实体识别任务的共享信息解决了边界混淆问题。实验结果表明,本文所提出的BERT-AdBC模型对复合材料检测领域实体识别的效果要优于传统模型,综合评价指标F最高提升6.48%。 展开更多
关键词 复合材料 深度学习 基于转换器的双向编码特征 对抗训练 命名实体识别
在线阅读 下载PDF
基于情绪分析的事故风险感知偏差研究 被引量:6
17
作者 张羽 赵碧柳 刘红勇 《中国安全科学学报》 CAS CSCD 北大核心 2022年第8期16-22,共7页
为探索公众对安全事故的风险感知,运用文本挖掘技术获得事故微博评论数据,采用中文风险感知双向编码转换器(BERT-RPC)识别惊讶和恐惧情绪,以频率惊讶测量事故概率感知偏差,以恐惧和损失惊讶测量事故损失感知偏差,基于二元逻辑回归考察... 为探索公众对安全事故的风险感知,运用文本挖掘技术获得事故微博评论数据,采用中文风险感知双向编码转换器(BERT-RPC)识别惊讶和恐惧情绪,以频率惊讶测量事故概率感知偏差,以恐惧和损失惊讶测量事故损失感知偏差,基于二元逻辑回归考察微博形式和内容对风险感知的影响。结果表明:低估安全事故风险的现象普遍存在,且对事故损失的低估更为突出;基于BERT-RPC模型的“抓取-分析”技术能够高效、低延迟地实现全网公众的风险感知偏差监测;交通行业的事故概率、损失被严重低估;一般事故的概率和特大事故的损失被严重低估;事故图片和视频有助于纠正事故损失的感知偏差,但对概率感知偏差作用有限;事故爆发初期报道对公众风险感知纠正效果最佳,调查结果公布和责任人宣判阶段次之。 展开更多
关键词 情绪分析 事故风险 感知偏差 双向编码转换器(BERT) 中文风险感知(RPC)
在线阅读 下载PDF
基于BERT的社交电商文本分类算法 被引量:21
18
作者 李可悦 陈轶 牛少彰 《计算机科学》 CSCD 北大核心 2021年第2期87-92,共6页
随着网络购物的高速发展,网络商家和购物者在网络交易活动中产生了大量的交易数据,其中蕴含着巨大的分析价值。针对社交电商商品文本的文本分类问题,为了更加高效准确地判断文本所描述商品的类别,提出了一种基于BERT模型的社交电商文本... 随着网络购物的高速发展,网络商家和购物者在网络交易活动中产生了大量的交易数据,其中蕴含着巨大的分析价值。针对社交电商商品文本的文本分类问题,为了更加高效准确地判断文本所描述商品的类别,提出了一种基于BERT模型的社交电商文本分类算法。首先,该算法采用BERT(Bidirectional Encoder Representations from Transformers)预训练语言模型来完成社交电商文本的句子层面的特征向量表示,随后有针对性地将获得的特征向量输入分类器进行分类,最后采用社交电商文本的数据集进行算法验证。实验结果表明,经过训练的模型在测试集上的分类结果F1值最高可达94.61%,高出BERT模型针对MRPC的分类任务6%。因此,所提社交电商文本分类算法能够较为高效准确地判断文本所描述商品的类别,有助于进一步分析网络交易数据,从海量数据中提取有价值的信息。 展开更多
关键词 多标签文本分类 特征提取 模型构建 双向编码 机器学习
在线阅读 下载PDF
基于跨度回归的中文事件触发词抽取 被引量:3
19
作者 赵宇豪 陈艳平 +1 位作者 黄瑞章 秦永彬 《应用科学学报》 CAS CSCD 北大核心 2023年第1期95-106,共12页
在中文事件触发词抽取任务中,基于词的模型会受到分词带来的错误,而基于字符的模型则难以捕获触发词的结构信息和上下文语义信息,为此提出了一种基于跨度回归的触发词抽取方法。该方法考虑到句子中特定长度的字符子序列(跨度)可能构成... 在中文事件触发词抽取任务中,基于词的模型会受到分词带来的错误,而基于字符的模型则难以捕获触发词的结构信息和上下文语义信息,为此提出了一种基于跨度回归的触发词抽取方法。该方法考虑到句子中特定长度的字符子序列(跨度)可能构成一个事件触发词,用基于Transformer的双向编码器的预训练语言模型获取句子的特征表示,进而生成触发词候选跨度;然后用一个分类器过滤低置信度的候选跨度,通过回归调整候选跨度的边界来准确定位触发词;最后对调整后的候选跨度进行分类得到抽取结果。在ACE2005中文数据集上的实验结果表明:基于跨度回归的方法对触发词识别任务的F1值为73.20%,对触发词分类任务的F1值为71.60%,优于现有模型;并与仅基于跨度的方法进行对比,验证了对跨度边界进行回归调整可以提高事件触发词检测的准确性。 展开更多
关键词 事件抽取 事件触发词 基于Transformer的双向编码 特征表示 跨度表示 回归调整
在线阅读 下载PDF
基于BERT提示的矿产资源管理规则检测方法研究 被引量:2
20
作者 胡容波 张广发 +1 位作者 王雅雯 方金云 《高技术通讯》 CAS 2023年第11期1136-1145,共10页
政策文本中管理规则检测是一个新兴的自然语言处理任务,在政策冲突检测、政策智能检索、事项合规性检查以及政务系统需求工程等方面具有重要应用价值。本文以矿产资源管理规则检测为研究目标,提出基于转换器的双向编码表征(BERT)提示的... 政策文本中管理规则检测是一个新兴的自然语言处理任务,在政策冲突检测、政策智能检索、事项合规性检查以及政务系统需求工程等方面具有重要应用价值。本文以矿产资源管理规则检测为研究目标,提出基于转换器的双向编码表征(BERT)提示的政策文本管理规则检测方法。该方法通过构建融入管理规则信息、带有[MASK]标记的提示模板,可以充分发挥掩码语言模型的自编码优势,有效激发BERT模型提取与管理规则相关的文本特征,增加模型稳定性;提出基于BERT模型进行管理规则检测的新应用模式,放弃使用[CLS]隐向量而采用[MASK]隐向量进行分类预测;在矿产资源管理规则数据集上的实验结果表明,该方法的准确率、宏平均F_(1)值、加权平均F_(1)值均优于基线方法,在公开数据集上的实验结果也表明了该方法的有效性。 展开更多
关键词 矿产资源 管理规则 文本分类 基于转换器的双向编码表征(BERT) 提示学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部