为了解决Min-Min调度算法中存在的负载不平衡问题,提高集群系统的负载均衡性,该文提出了一种基于Min-Min极限下压算法的负载模糊分类与局部重调度算法(Load fuzzy classification and local re-schedule algorithm,LFC-LRA)。引入模糊...为了解决Min-Min调度算法中存在的负载不平衡问题,提高集群系统的负载均衡性,该文提出了一种基于Min-Min极限下压算法的负载模糊分类与局部重调度算法(Load fuzzy classification and local re-schedule algorithm,LFC-LRA)。引入模糊分类的思想,根据各节点的负载大小,将节点分成三种类型:重负载、中负载和轻负载;对负载较重和较轻的节点进行重新调度,使用Min-Min极限下压算法压缩这些节点的任务完成时间,改善算法的负载失衡问题。实验结果表明:改进后的算法具有较好的负载均衡性,能有效地提高资源的利用率,降低系统的任务完成时间。展开更多
为了更好地满足云计算中用户的服务质量(quality of service,QoS)需求,合理利用云数据中心的资源,以任务的执行时间和虚拟机的负载均衡作为优化的目标对象,提出了一种基于烟花算法(fireworks algorithm,FWA)的多目标优化调度模型。烟花...为了更好地满足云计算中用户的服务质量(quality of service,QoS)需求,合理利用云数据中心的资源,以任务的执行时间和虚拟机的负载均衡作为优化的目标对象,提出了一种基于烟花算法(fireworks algorithm,FWA)的多目标优化调度模型。烟花算法是一种启发式算法,利用爆炸算子、高斯变异和选择策略能较快地寻找到全局最优解。通过在Cloudsim上与粒子群优化算法(PSO)和遗传算法(GA)进行有效性和执行时间上的对比,结果表明烟花算法在不同实验次数下可持续得到最优适应度值,而且在种群规模不断扩大时,烟花算法的执行时间没有陡然增加,明显优于PSO算法和GA算法。展开更多
文摘为了解决Min-Min调度算法中存在的负载不平衡问题,提高集群系统的负载均衡性,该文提出了一种基于Min-Min极限下压算法的负载模糊分类与局部重调度算法(Load fuzzy classification and local re-schedule algorithm,LFC-LRA)。引入模糊分类的思想,根据各节点的负载大小,将节点分成三种类型:重负载、中负载和轻负载;对负载较重和较轻的节点进行重新调度,使用Min-Min极限下压算法压缩这些节点的任务完成时间,改善算法的负载失衡问题。实验结果表明:改进后的算法具有较好的负载均衡性,能有效地提高资源的利用率,降低系统的任务完成时间。
文摘为了更好地满足云计算中用户的服务质量(quality of service,QoS)需求,合理利用云数据中心的资源,以任务的执行时间和虚拟机的负载均衡作为优化的目标对象,提出了一种基于烟花算法(fireworks algorithm,FWA)的多目标优化调度模型。烟花算法是一种启发式算法,利用爆炸算子、高斯变异和选择策略能较快地寻找到全局最优解。通过在Cloudsim上与粒子群优化算法(PSO)和遗传算法(GA)进行有效性和执行时间上的对比,结果表明烟花算法在不同实验次数下可持续得到最优适应度值,而且在种群规模不断扩大时,烟花算法的执行时间没有陡然增加,明显优于PSO算法和GA算法。