期刊文献+
共找到3,230篇文章
< 1 2 162 >
每页显示 20 50 100
基于网络的入侵检测系统及其实现 被引量:28
1
作者 刘春颂 杨寿保 杜滨 《计算机应用》 CSCD 北大核心 2003年第2期28-31,共4页
随着各种网络应用的迅速普及与发展,政府上网、企业上网已成为当今社会发展的必然趋势。如何保证信息访问的合法性、安全性已成为人们关注的焦点。而旧的以防火墙为基础的安全体系已经越来越不适应人们的要求。文中给出了一种新的安全... 随着各种网络应用的迅速普及与发展,政府上网、企业上网已成为当今社会发展的必然趋势。如何保证信息访问的合法性、安全性已成为人们关注的焦点。而旧的以防火墙为基础的安全体系已经越来越不适应人们的要求。文中给出了一种新的安全防护手段(NIDS)及其实现(Snort),较好地解决了这个问题。 展开更多
关键词 入侵检测系统 网络安全 防火墙 计算机网络 立体防御系统
在线阅读 下载PDF
基于网络的入侵检测系统的感应器组件 被引量:2
2
作者 曹元大 岳治宇 张海勇 《北京理工大学学报》 EI CAS CSCD 北大核心 2002年第5期615-617,625,共4页
从简化入侵检测系统的构造出发 ,设计和实现了一个基于网络的入侵检测系统的感应器组件 .该组件提供了较为全面的功能 ,包括采集网络数据、IP重组、TCP层重组和基于多种应用层协议的数据还原 .该组件具有灵活的模块化结构 ,提供了很好... 从简化入侵检测系统的构造出发 ,设计和实现了一个基于网络的入侵检测系统的感应器组件 .该组件提供了较为全面的功能 ,包括采集网络数据、IP重组、TCP层重组和基于多种应用层协议的数据还原 .该组件具有灵活的模块化结构 ,提供了很好的复用性和扩展性 ,并实现了自定义加载的功能 .用户可以根据实际需求定制组件的大小 ,或者添加自定义的模块到组件中 . 展开更多
关键词 组件 入侵检测系统 感应器 数据采集 IP重组 TCP层重组 网络安全
在线阅读 下载PDF
基于网络的入侵检测系统弱点分析 被引量:1
3
作者 任晓峰 董占球 《计算机工程与科学》 CSCD 2002年第6期20-22,31,共4页
随着网络入侵事件的日益增多 ,入侵检测系统 (IDS)越来越广泛地应用在网络环境中。本文从入侵检测的通用体系结构CIDF模型出发 ,对基于网络的入侵检测系统普遍存在的弱点进行了分析 。
关键词 入侵检测系统 弱点分析 CIDF模型 镜像 模式匹配 网络安全 计算机网络
在线阅读 下载PDF
基于深度学习的网络入侵检测系统综述 被引量:2
4
作者 邓淼磊 阚雨培 +3 位作者 孙川川 徐海航 樊少珺 周鑫 《计算机应用》 北大核心 2025年第2期453-466,共14页
入侵检测系统(IDS)等安全机制已被用于保护网络基础设施和网络通信免受网络攻击。随着深度学习技术的不断进步,基于深度学习的IDS逐渐成为网络安全领域的研究热点。通过对文献广泛调研,详细介绍利用深度学习技术进行网络入侵检测的最新... 入侵检测系统(IDS)等安全机制已被用于保护网络基础设施和网络通信免受网络攻击。随着深度学习技术的不断进步,基于深度学习的IDS逐渐成为网络安全领域的研究热点。通过对文献广泛调研,详细介绍利用深度学习技术进行网络入侵检测的最新研究进展。首先,简要概述当前几种IDS;其次,介绍基于深度学习的IDS中常用的数据集和评价指标;然后,总结网络IDS中常用的深度学习模型及其应用场景;最后,探讨当前相关研究面临的问题,并提出未来的发展方向。 展开更多
关键词 网络安全 入侵检测 深度学习 异常检测 网络入侵检测系统
在线阅读 下载PDF
基于联邦学习的智慧采购供应链网络入侵检测系统 被引量:1
5
作者 王建祥 李琳 +2 位作者 宗亚男 邱型锋 武继龙 《控制工程》 北大核心 2025年第1期135-141,共7页
为了保护智慧采购供应链网络中各参与企业的数据隐私安全,提出了一种基于联邦学习的入侵检测系统。首先,针对传统基于联邦学习的入侵检测模型训练低效的问题,提出了联合节点选择和带宽分配的模型训练方法,为高数据质量节点分配合适带宽... 为了保护智慧采购供应链网络中各参与企业的数据隐私安全,提出了一种基于联邦学习的入侵检测系统。首先,针对传统基于联邦学习的入侵检测模型训练低效的问题,提出了联合节点选择和带宽分配的模型训练方法,为高数据质量节点分配合适带宽;然后,为了客观衡量企业节点的入侵检测模型的迁移性能,构建基于数据分布和模型质量量化的迁移性能评估体系,进而提出入侵检测模型迁移效率最优函数,将复杂的节点选择和带宽分配问题转化为易于求解的迁移效率最大化问题;最后,提出了基于深度确定性策略梯度的迁移效率优化算法,求解最佳节点选择与带宽分配策略。实验结果表明,所提方法在确保高检测性能的同时,可以减少模型训练时间,提高训练效率,为智慧采购供应链网络提供更为可靠和高效的安全防护。 展开更多
关键词 智慧采购供应链网络 入侵检测 联邦学习 数据隐私保护
在线阅读 下载PDF
利用区块链智能合约技术的协同网络入侵检测系统
6
作者 朱雯曦 马琳娟 王怡鸥 《南京理工大学学报》 北大核心 2025年第2期192-200,共9页
为提高网络攻击检测性能并改善数据隐私性,提出了基于区块链的协同式网络入侵检测系统(B-CIDS)。将基于高斯混合模型(GMM)和局部异常因子(LOF)的入侵检测系统(IDS)部署在不同云节点,利用GMM建立无异常数据模型,拟合每条记录的特征边界;... 为提高网络攻击检测性能并改善数据隐私性,提出了基于区块链的协同式网络入侵检测系统(B-CIDS)。将基于高斯混合模型(GMM)和局部异常因子(LOF)的入侵检测系统(IDS)部署在不同云节点,利用GMM建立无异常数据模型,拟合每条记录的特征边界;通过LOF函数准确定义攻击阈值,实现对各种攻击类型的准确检测。最后通过区块链和智能合约的警报数据聚合机制对IDS进行整合,实现隐私保护的协同入侵检测。试验结果表明,所提方法能够高效检测各种内部和外部攻击,平均检测准确率为95%~99%,且能够识别出破环云服务的恶意行为。检测率和误报率表现均优于其他对比方法,能够确保所有B-CIDS节点上的数据机密性、真实性和完整性。 展开更多
关键词 协同入侵检测系统 高斯混合模型 局部异常因子 区块链 智能合约
在线阅读 下载PDF
基于马尔可夫判定过程的光纤网络入侵检测方法 被引量:1
7
作者 郭海智 贾志诚 李金库 《激光杂志》 北大核心 2025年第3期193-198,共6页
为了可以精准实现光纤网络入侵检测,提出基于马尔可夫判定过程的光纤网络入侵检测方法。通过频域分块技术对光纤网络信号展开信号提纯,利用经验模态分解方法对入侵信号进行初始检测,采用模糊层次分析法确定网络接入行为信用度,对于信用... 为了可以精准实现光纤网络入侵检测,提出基于马尔可夫判定过程的光纤网络入侵检测方法。通过频域分块技术对光纤网络信号展开信号提纯,利用经验模态分解方法对入侵信号进行初始检测,采用模糊层次分析法确定网络接入行为信用度,对于信用度较高的接入行为直接通过,剩余接入行为则利用马尔可夫判定过程展开判定,由此实现入侵检测。实验结果表明,该方法能够快速、准确检测入侵信号,特别是针对Pording数据集所遭受侵入式窃听行为,检出率高达0.985。在整个实验中,该方法检出率的最小值也可以达到0.920,平均检测误判率、平均检测漏判率的最大值分别为0.01、0.02。这说明该方法显著提升光纤网络的安全性和稳定性,为保障网络安全提供有力的支持。 展开更多
关键词 马尔可夫判定过程 光纤网络 经验模态分解 模糊层次分析法 入侵检测
在线阅读 下载PDF
基于小生境遗传算法的网络入侵节点智能检测方法
8
作者 王建刚 《吉林大学学报(理学版)》 北大核心 2025年第4期1099-1104,共6页
为降低网络入侵的风险,提出一种基于小生境遗传算法的网络入侵节点智能检测方法.首先,针对网络入侵的攻击行为进行聚合处理,利用双人攻防博弈模型分析网络的攻防状态,通过比对攻击与防御的效用强度,对网络的安全性进行全面分析,再根据... 为降低网络入侵的风险,提出一种基于小生境遗传算法的网络入侵节点智能检测方法.首先,针对网络入侵的攻击行为进行聚合处理,利用双人攻防博弈模型分析网络的攻防状态,通过比对攻击与防御的效用强度,对网络的安全性进行全面分析,再根据分析结果,通过卷积神经网络实现对攻击源的定位.其次,基于粗糙集理论,利用小生境遗传算法确定网络入侵节点检测的适应度函数,根据网络入侵节点智能检测规则,建立网络入侵节点智能检测模型,获得最终的检测结果.实验结果表明,该方法可有效提升对入侵攻击源的定位准确性和入侵节点检测准确性,该方法检测结果的宏F1分数大于0.96,表明该方法可有效实现设计预期. 展开更多
关键词 小生境遗传算法 网络入侵 入侵节点 粗糙集理论 适应度函数 入侵检测
在线阅读 下载PDF
光纤传感网络混合式入侵行为实时检测研究
9
作者 陆思辰 王福军 《激光杂志》 北大核心 2025年第1期202-207,共6页
混合式入侵行为往往在一个或多个局部位置出现,且在时间上存在一定的聚集性,无法很好地捕捉其复杂特征,为此提出光纤传感网络混合式入侵行为实时检测方法。以平均过零率和短时能量作为指标对某段信号进行分割处理,减少不断累加的处理延... 混合式入侵行为往往在一个或多个局部位置出现,且在时间上存在一定的聚集性,无法很好地捕捉其复杂特征,为此提出光纤传感网络混合式入侵行为实时检测方法。以平均过零率和短时能量作为指标对某段信号进行分割处理,减少不断累加的处理延时,提取可能存在入侵行为的光纤传感信号。通过高阶谱分析、样本熵分析和奇异值分析进一步提取信号特征,构建并利用多层梯度下降法训练多个深度神经网络,将所提取的特征输入至对应深度神经网络中,经由Softmax函数输出混合式入侵行为检测结果,最后采用改进的DS证据理论关联融合各深度神经网络输出的检测结果,实现光纤传感网络混合式入侵行为实时检测。实验结果表明,所提方法入侵行为检测结果更准确、内存占用率和CPU使用率较低。 展开更多
关键词 光纤传感网络 混合式入侵行为 实时检测 深度神经网络 奇异值分解
在线阅读 下载PDF
融合CNN-GRU和Transformer的网络入侵检测方法
10
作者 黄迎春 邢秀祺 《火力与指挥控制》 北大核心 2025年第6期21-27,共7页
随着网络技术的快速发展及其在军事领域的广泛应用,入侵检测技术对系统安全起着重要作用。针对传统入侵检测数据集类别不平衡问题,提出一种融合卷积门控循环单元(CNN-GRU)和基于自注意力机制的神经网络模型(Transformer)的网络入侵检测... 随着网络技术的快速发展及其在军事领域的广泛应用,入侵检测技术对系统安全起着重要作用。针对传统入侵检测数据集类别不平衡问题,提出一种融合卷积门控循环单元(CNN-GRU)和基于自注意力机制的神经网络模型(Transformer)的网络入侵检测方法CGT(CNN-GRU Transformer),该方法针对双向长短期记忆网络(LSTM)只考虑时序特征而忽略空间特征且参数较多的特点优化入侵检测技术,融合过-欠采样与Wasserstein生成对抗网络的数据平衡处理模型NBW(Neighbourhood-cleaning-rule borderline-SMOTE WGAN)对数据集进行平衡处理。实验结果证明,所提出的方法在NSL-KDD数据集上表现出较好的效果,有效提升了入侵检测性能。 展开更多
关键词 入侵检测 卷积门控循环单元 数据平衡处理 领域清理规则 神经网络
在线阅读 下载PDF
基于深度学习的时空特征融合网络入侵检测模型研究 被引量:3
11
作者 李聪聪 袁子龙 滕桂法 《信息安全研究》 北大核心 2025年第2期122-129,共8页
随着网络攻击日益增多,网络入侵检测系统在维护网络安全方面也越来越重要.目前多数研究采用深度学习的方法进行网络入侵检测,但未充分从多个角度利用流量的特征,同时存在实验数据集过于陈旧的问题.提出了一种并行结构的DSC-Inception-Bi... 随着网络攻击日益增多,网络入侵检测系统在维护网络安全方面也越来越重要.目前多数研究采用深度学习的方法进行网络入侵检测,但未充分从多个角度利用流量的特征,同时存在实验数据集过于陈旧的问题.提出了一种并行结构的DSC-Inception-BiLSTM网络,使用最新的数据集评估所设计的网络模型.该模型包括网络流量图像和文本异常流量检测2个分支,分别通过改进的卷积神经网络和循环神经网络提取流量的空间特征和时序特征.最后通过融合时空特征实现网络入侵检测.实验结果表明,在CIC-IDS2017,CSE-CIC-IDS2018,CIC-DDoS2019这3个数据集上,该模型分别达到了99.96%,99.19%,99.95%的准确率,能够对异常流量进行高精度分类,满足入侵检测系统的要求. 展开更多
关键词 网络入侵检测 深度学习 特征融合 深度可分离卷积 INCEPTION
在线阅读 下载PDF
一种基于图热核扩散卷积的网络入侵检测方法 被引量:1
12
作者 景永俊 王浩 +1 位作者 邵堃 王晓峰 《计算机工程与科学》 北大核心 2025年第3期459-471,共13页
网络入侵检测是保护计算资源和数据免受网络攻击的重要手段。近年来,基于深度学习的方法在入侵检测领域取得了显著进展,但仍存在有效特征提取困难和过度依赖手工标注数据等问题。针对上述问题,提出一种基于图热核扩散卷积的半监督入侵... 网络入侵检测是保护计算资源和数据免受网络攻击的重要手段。近年来,基于深度学习的方法在入侵检测领域取得了显著进展,但仍存在有效特征提取困难和过度依赖手工标注数据等问题。针对上述问题,提出一种基于图热核扩散卷积的半监督入侵检测方法,该方法在流量统计特征的基础上,以源IP和目标IP地址为节点,以它们之间的交互关系为边,构建入侵检测主机交互图。通过融合网络流量统计特征与潜在的图结构特征,该方法利用图热核扩散传播机制,聚合丰富的邻域信息以学习节点的特征表示,这些节点表示能够使得下游的入侵检测任务更准确地识别异常节点和恶意连接,提升入侵检测的性能。在CIC-IDS-2017和CIC-IDS-20182个数据集上进行的实验结果表明,该方法能够有效捕获网络流量数据中的复杂拓扑结构和节点之间的关系特征,仅通过少量的流量特征和标签信息就能够学习节点的低维向量表示。此外,通过对节点表示的聚类分析和可视化,能够揭示攻击节点在网络中的社区结构和连接特征,这为新型或变种攻击的预防提供了参考。 展开更多
关键词 网络入侵检测 图热核扩散 图表示学习 图神经网络
在线阅读 下载PDF
面向工业网络流量的实时入侵检测方法 被引量:1
13
作者 连莲 王文诚 +1 位作者 宗学军 何戡 《沈阳工业大学学报》 北大核心 2025年第1期98-105,共8页
【目的】工业互联网是国家关键基础设施的重要组成部分,其安全性直接关系到国家安全、经济稳定和社会秩序。随着工业互联网的广泛应用,工业控制系统的网络攻击频发,造成了严重的经济损失和社会影响,因此,开发高效的实时入侵检测系统显... 【目的】工业互联网是国家关键基础设施的重要组成部分,其安全性直接关系到国家安全、经济稳定和社会秩序。随着工业互联网的广泛应用,工业控制系统的网络攻击频发,造成了严重的经济损失和社会影响,因此,开发高效的实时入侵检测系统显得尤为重要。传统的入侵检测系统在处理高维度网络流量数据时,往往难以有效区分正常流量和异常流量,尤其是在缺乏异常流量样本的情况下。【方法】为了解决该问题,本研究通过分析某油气集输管线工业控制系统真实网络流量特性,提出了一种结合Suricata的滑动窗口密度聚类工业网络实时异常检测方法。该方法针对工业网络流量特性,利用Suricata的开源性、可扩展性以及滑动窗密度聚类算法的动态检测能力,建立从流量采集解析到实时入侵检测的全过程入侵检测模型。本研究通过分析真实工业控制系统环境中的网络流量特性发现工业网络流量存在一定的周期性,利用基尼系数选取能体现工业网络流量特性混杂程度的特征,实现对工业网络流量降维处理,对降维后的数据使用滑动窗口分组构建工业网络正常流量特征阈值。利用改写Suricata实现实时流量采集与解析,并将实时解析结果输入到所构建的滑动窗口密度聚类入侵检测算法中,通过与工业网络正常流量特征阈值进行对比,快速筛选绝对正常流量组和绝对异常流量组。针对正常流量与异常流量掺杂的组别,通过密度聚类算法将异常流量分离,完成异常流量检测。【结果】将入侵检测方法在油气集输全流程工业场景攻防靶场中应用并开展大量实验,该方法能够有效识别异常流量,检测率达到96%以上,误报率低于3%。所提出的方法可以满足工业网络中异常流量检测高效性、可靠性和实时性需求。【结论】本研究的创新之处在于提供了一种新的工业网络异常流量检测方法,结合Suricata和滑动窗口密度聚类算法,建立了从流量采集解析到实时入侵检测的全过程入侵检测模型,对工业互联网安全防护具有重要的实践价值,为工业网络实时入侵检测提供一种新的研究思路。 展开更多
关键词 工业网络 网络安全 流量解析 特征分析 基尼系数 机器学习 密度聚类算法 入侵检测
在线阅读 下载PDF
工控入侵检测系统安全增强方案 被引量:2
14
作者 李方晓 侯会文 石乐义 《计算机工程与设计》 北大核心 2025年第1期124-130,共7页
针对基于联邦学习工控入侵检测模型训练时存在中心化、易受攻击的问题,提出一种去中心安全增强方案。在联邦学习训练中,通过模型参数确定参数聚合临时服务器并引入跳变机制,可以有效抵御拒绝服务攻击;利用系统流量数据中时间戳等信息,... 针对基于联邦学习工控入侵检测模型训练时存在中心化、易受攻击的问题,提出一种去中心安全增强方案。在联邦学习训练中,通过模型参数确定参数聚合临时服务器并引入跳变机制,可以有效抵御拒绝服务攻击;利用系统流量数据中时间戳等信息,减缓重放攻击的影响;提出一种基于同态加密的流量加密方案。实验结果表明,所提方案可以抵抗每秒10000数据包的拒绝服务攻击,提高了联邦学习的安全性。 展开更多
关键词 工业控制网络 入侵检测 端信息跳变 分布式拒绝服务攻击 重放攻击 同态加密 主动防御 联邦学习
在线阅读 下载PDF
基于联邦学习和时空特征融合的网络入侵检测方法
15
作者 王立红 刘新倩 +1 位作者 李静 冯志全 《浙江大学学报(工学版)》 北大核心 2025年第6期1201-1210,共10页
针对数据特征提取不全面、传统集中式入侵检测方法存在数据壁垒与隐私泄露的问题,提出基于联邦学习和时空特征融合的入侵检测方法.该方法旨在通过卷积神经网络和长短期记忆网络提取时间和空间特征,将提取的特征“并联”得到融合特征,通... 针对数据特征提取不全面、传统集中式入侵检测方法存在数据壁垒与隐私泄露的问题,提出基于联邦学习和时空特征融合的入侵检测方法.该方法旨在通过卷积神经网络和长短期记忆网络提取时间和空间特征,将提取的特征“并联”得到融合特征,通过多头注意力机制识别网络流量数据中的重要特征,通过双向门控循环单元进行训练,随后通过Softmax函数进行分类.在模型训练过程中,为了防止隐私泄露,结合联邦学习的固有特性,允许数据留在本地用于训练神经网络模型.实验结果表明,该模型在数据集CIC-IDS2018、NSL-KDD和UNSWNB15上的准确率分别达到99.00%、97.64%和75.28%. 展开更多
关键词 入侵检测 深度学习 联邦学习 卷积神经网络(CNN) 长短期记忆网络(LSTM)
在线阅读 下载PDF
基于SEGAN和Open-DNN的工业控制系统入侵威胁检测研究
16
作者 胡智锋 孙峙华 《控制工程》 北大核心 2025年第3期400-408,共9页
针对工业控制系统容易遭受网络入侵威胁,进而影响工业控制系统安全性的问题,提出了一种结合生成对抗网络和深度神经网络的工业控制系统入侵威胁检测算法模型。该模型首先提出了一种样本均衡生成对抗网络,将反向传播神经网络(back propag... 针对工业控制系统容易遭受网络入侵威胁,进而影响工业控制系统安全性的问题,提出了一种结合生成对抗网络和深度神经网络的工业控制系统入侵威胁检测算法模型。该模型首先提出了一种样本均衡生成对抗网络,将反向传播神经网络(back propagation neural network,BPNN)作为分类器对入侵威胁进行分类,并通过蜻蜓优化算法实现对BPNN的改进。然后,结合开集识别和深度神经网络来实现对未知攻击的检测。最后,采用KDD数据集对模型的性能进行测试。实验结果表明,已知攻击的入侵威胁检测模型的准确率能够达到98%,F1值为0.947,召回率为0.975;未知攻击检测模型的精度为0.987,F1值为0.973,证明所提出的工业控制系统入侵威胁检测算法模型具有较高的检测精度,有效保障了工业系统的安全性。 展开更多
关键词 工业控制系统 生成对抗网络 网络入侵检测 深度神经网络 蜻蜓优化算法
在线阅读 下载PDF
基于GraphSAGE-MGAT的工控系统入侵检测方法
17
作者 胡育鸣 王华忠 《华东理工大学学报(自然科学版)》 北大核心 2025年第2期270-276,共7页
提出一种融合了图随机采样与聚合(GraphSAGE)和改进的图注意力网络(GAT)的工控入侵检测图神经网络算法,以处理工控入侵检测中存在的数据特征种类多和数量大等复杂特性。首先将入侵检测流量数据构建为图结构形式,利用GraphSAGE采样和聚... 提出一种融合了图随机采样与聚合(GraphSAGE)和改进的图注意力网络(GAT)的工控入侵检测图神经网络算法,以处理工控入侵检测中存在的数据特征种类多和数量大等复杂特性。首先将入侵检测流量数据构建为图结构形式,利用GraphSAGE采样和聚合邻居节点信息得到节点的embedding向量,降低图结构空间复杂度,提高对大量数据处理的效率。运用改进的多头图注意力机制,丰富捕获的特征信息,计算节点之间的相关性和重要性,为各个节点分配相应权重,提高分类精准度。将该方法在工控数据集上验证,实验结果表明,该方法具有更好的时间效率以及更高的检测精度。 展开更多
关键词 工控系统 入侵检测 图随机采样与聚合 图注意力网络 图结构
在线阅读 下载PDF
基于深度神经网络的低时延的入侵检测模型
18
作者 杨洪朝 谢英辉 +1 位作者 张占 梁芮 《传感器与微系统》 北大核心 2025年第3期84-88,共5页
为适应物联网(IoT)节点计算能力不足和易受网络攻击等特点,提出融合生成对抗网络(GAN)和长短期记忆网络(LSTM)的低时延的入侵检测模型(GAN-LLD),使模型更好适应IoT对资源的苛刻需求。GAN-LLD模型采用雾结构,将检测模型部署在雾层,进而... 为适应物联网(IoT)节点计算能力不足和易受网络攻击等特点,提出融合生成对抗网络(GAN)和长短期记忆网络(LSTM)的低时延的入侵检测模型(GAN-LLD),使模型更好适应IoT对资源的苛刻需求。GAN-LLD模型采用雾结构,将检测模型部署在雾层,进而满足低检测时延要求。为了获取更高的检测率,GAN-LLD模型引入重构损失,通过将数据样本映射至潜在空间,再计算重构损失。最后,利用数据集NSL-KDD验证GAN-LLD模型的性能。仿真结果表明,相比于多变量异常检测(MAD)-GAN模型,提出的GAN-LLD模型具有高的检测率和低的检测时延。 展开更多
关键词 物联网 入侵检测模型 生成对抗网络 重构损失 检测时延
在线阅读 下载PDF
融合过-欠采样与GAN的网络入侵检测方法
19
作者 王秀玉 吴晓鸰 冯永晋 《小型微型计算机系统》 北大核心 2025年第2期449-455,共7页
随着互联网技术的发展,网络数据流量每秒激增,伴随而来更多的安全问题.针对网络入侵数据集类不平衡和数据维度高导致的分类不准确问题,本文提出一种融合过-欠采样和GAN的网络入侵检测方法.采用随机欠采样减少多数类样本数量,以避免欠拟... 随着互联网技术的发展,网络数据流量每秒激增,伴随而来更多的安全问题.针对网络入侵数据集类不平衡和数据维度高导致的分类不准确问题,本文提出一种融合过-欠采样和GAN的网络入侵检测方法.采用随机欠采样减少多数类样本数量,以避免欠拟合问题.同时,通过合成少数类过采样技术合成少数类样本,以降低类不平衡所带来的影响.此外,结合GAN使合成样本更接近真实样本,以解决SMOTE中新合成样本缺乏合理性的问题.最后,集成自编码器,通过降低数据集的维度来减少内存占用,并加速分类模型的训练.在CICIDS2017数据集上进行对比实验,结果表明本文提出的融合过-欠采样和GAN的网络入侵检测方法性能优于其他方法. 展开更多
关键词 网络入侵检测 生成对抗网络 SMOTE 自编码器
在线阅读 下载PDF
基于GAN-Transformer的车载网络入侵检测算法
20
作者 王浩轩 苏圣超 崔文霞 《计算机工程与设计》 北大核心 2025年第6期1710-1716,共7页
针对当前车载网络入侵检测算法可用的训练数据集稀少且类别不均衡、难以提取时序性及泛化性较差的问题,提出一种基于Transformer模型的车载网络入侵检测算法。将报文输入到模型中进行对抗训练得到捕获正常报文时序特征的生成器和判别器... 针对当前车载网络入侵检测算法可用的训练数据集稀少且类别不均衡、难以提取时序性及泛化性较差的问题,提出一种基于Transformer模型的车载网络入侵检测算法。将报文输入到模型中进行对抗训练得到捕获正常报文时序特征的生成器和判别器;通过判别器将输入的报文进行精确分类。为提升算法的泛化能力,使用生成器以随机掩码预测的方法进行入侵检测。经过测试并采用消融实验验证后,针对各类入侵检测的实验结果表明,所提算法相较最新车载网络入侵检测算法实现更优异的检测性能。 展开更多
关键词 控制器局域网络 小样本学习 车载网络 入侵检测系统 自注意力模型 生成对抗网络 多头注意力
在线阅读 下载PDF
上一页 1 2 162 下一页 到第
使用帮助 返回顶部