期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
融入维度学习和多阶段策略的猎人猎物算法及应用
1
作者 黄淄博 王防修 苏晨 《计算机工程与设计》 北大核心 2025年第7期2099-2108,共10页
针对猎人猎物优化算法在迭代末期种群多样性衰减、易陷入局部最优的缺点,提出一种融入维度学习和多阶段策略改进的猎人猎物算法(DLMHPO)。设计非线性收敛因子作为勘探阶段和开发阶段的控制参数,拓宽算法在早期的寻优范围并加快后期的收... 针对猎人猎物优化算法在迭代末期种群多样性衰减、易陷入局部最优的缺点,提出一种融入维度学习和多阶段策略改进的猎人猎物算法(DLMHPO)。设计非线性收敛因子作为勘探阶段和开发阶段的控制参数,拓宽算法在早期的寻优范围并加快后期的收敛速度;引入多因子变量将猎人位置更新公式细分为4个阶段,强化各个阶段行为的收益;提出维度学习策略对种群进行扰动,避免算法陷入局部最优。通过在CEC2017测试集上对DLMHPO进行仿真对比实验,验证了DLMHPO拥有更高的收敛精度、更快的收敛速度以及更好的鲁棒性。在传感器网络覆盖的工程问题中,DLMHPO取得了出色的优化结果。 展开更多
关键词 猎人猎物优化算法 非线性收敛因子 学习策略 多阶段策略 无线传感器 哈里斯鹰优化算法 SIGMOID函数
在线阅读 下载PDF
基于改进灰狼算法和自适应分裂KD-Tree的点云配准方法 被引量:2
2
作者 杜沅昊 耿秀丽 +1 位作者 徐诚智 刘银华 《系统仿真学报》 北大核心 2025年第2期424-435,共12页
针对传统GWO存在搜索效率不足、易陷入局部最优等问题,提出了一种基于改进GWO和迭代最近点(ICP)的工业复杂零件点云配准方法。针对GWO随机初始化导致种群分布不均匀的问题,采用混沌映射对灰狼种群进行初始化,使种群更加均匀地分布在搜... 针对传统GWO存在搜索效率不足、易陷入局部最优等问题,提出了一种基于改进GWO和迭代最近点(ICP)的工业复杂零件点云配准方法。针对GWO随机初始化导致种群分布不均匀的问题,采用混沌映射对灰狼种群进行初始化,使种群更加均匀地分布在搜索空间内;引入一种非线性控制参数策略,平衡灰狼算法的局部搜索和全局搜索能力;融合精英反向学习,提高算法后期解的质量;利用ICP算法进行精配准。设计一种自适应分裂维度的方法,动态选择分裂维度,提高点云数据质量。仿真结果表明:IGWO相较于3种对比算法的RMSE平均提高了80.31%、73.99%、47.7%。 展开更多
关键词 改进灰狼算法 混沌映射 非线性参数 精英反向学习 点云配准 自适应分裂
在线阅读 下载PDF
基于随机维度划分与学习的粒子群优化算法 被引量:6
3
作者 张庆科 孟祥旭 +2 位作者 张化祥 杨波 刘卫国 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第2期367-378,405,共13页
针对粒子群优化算法在搜索过程存在的种群多样性低和过早收敛问题,提出基于随机维度划分与学习的新型粒子群优化算法(RVPLO).该算法将每个粒子的维度随机划分为多个不同的子段,每个子段随机分配一种学习算子(中心学习算子或离散学习算... 针对粒子群优化算法在搜索过程存在的种群多样性低和过早收敛问题,提出基于随机维度划分与学习的新型粒子群优化算法(RVPLO).该算法将每个粒子的维度随机划分为多个不同的子段,每个子段随机分配一种学习算子(中心学习算子或离散学习算子),通过学习算子实现对各子段内的维度数值更新操作.中心学习算子用以加强粒子的全局搜索能力,离散学习算子用以加强粒子的局部搜索能力.粒子维度划分策略实现了将高维优化问题转化为低维优化问题,降低了优化问题求解的难度.粒子随机维度划分和算子随机分配的双重动态调节机制使得算法具备求解复杂单峰函数,多峰函数优化问题的能力.实验测试结果及显著性统计结果表明,RVPLO算法同其他8个经典改进算法相比,在单峰函数,多峰等函数优化中具有收敛速度快,求解精度高的优势. 展开更多
关键词 粒子群优化算法 随机划分 中心学习 离散学习 函数优化
在线阅读 下载PDF
局部维度改进的教与学优化算法 被引量:6
4
作者 何杰光 彭志平 +1 位作者 崔得龙 李启锐 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第11期2159-2170,共12页
针对原始教与学优化算法局部搜索能力不强和进化后期容易陷入局部最优的问题,提出基于局部维度改进和自学习扰动的教与学优化算法.将局部维度改进融入教和学2个阶段,将个体的高质量维度变量保留到下一代,不断改善低质量维度变量,提高算... 针对原始教与学优化算法局部搜索能力不强和进化后期容易陷入局部最优的问题,提出基于局部维度改进和自学习扰动的教与学优化算法.将局部维度改进融入教和学2个阶段,将个体的高质量维度变量保留到下一代,不断改善低质量维度变量,提高算法的细粒度搜索能力.提出一种混合全局维度改进和局部维度改进的个体更新方式,通过2种改进权重的逐代变化实现算法早期全局搜索和后期局部探测的平衡.在新算法中增加基于个体最优位置和搜索边界信息的自学习阶段,使种群在进化后期仍能向最优解方向搜索,避免算法过早陷入局部最优.基于标准测试函数的仿真结果表明,相比于原始的教与学优化算法和当前其他优秀的改进版本,局部维度改进的教与学优化算法的收敛精度平均提高了10~2~10~5倍,收敛速度平均提高了2~3倍. 展开更多
关键词 教与学优化算法 局部改进 学习扰动 混合策略
在线阅读 下载PDF
基于改进灰狼算法和多核极限学习机的铁水硅含量预测建模 被引量:17
5
作者 方一鸣 赵晓东 +2 位作者 张攀 刘乐 王硕玉 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第7期1644-1654,共11页
针对高炉铁水硅含量难以在线检测的问题,本文提出一种基于改进灰狼算法(IGWO)优化的多核极限学习机(MKELM)高炉铁水硅含量预测建模方法.首先,针对灰狼算法(GWO)寻优能力的不足,将最优-最差正交反向学习(OWOOBL)策略应用于灰狼算法的位... 针对高炉铁水硅含量难以在线检测的问题,本文提出一种基于改进灰狼算法(IGWO)优化的多核极限学习机(MKELM)高炉铁水硅含量预测建模方法.首先,针对灰狼算法(GWO)寻优能力的不足,将最优-最差正交反向学习(OWOOBL)策略应用于灰狼算法的位置更新,得到一种改进灰狼优化算法.通过10种标准函数对所提算法进行仿真测试,结果表明此算法具有更好的寻优能力.其次,针对单核极限学习机(KELM)回归能力不足,将不同种类的核函数加权组合,并采用改进灰狼算法对多核极限学习机中的加权系数等参数进行优化.最后,基于某钢厂的实测数据对高炉铁水硅含量进行预测建模,仿真结果表明,本文所提方法的预测效果优于反向传播神经网络(BP-NN)、极限学习机(ELM)、KELM和GWO-MKELM,对高炉炼铁具有较好的指导意义. 展开更多
关键词 改进灰狼优化算法 最优-最差正交反向学习 多核极限学习 铁水硅含量 预测建模
在线阅读 下载PDF
面向手眼标定的改进灰狼优化方法 被引量:2
6
作者 李晟尧 肖世德 +1 位作者 赖焕杰 胡锴沣 《机械设计与制造》 北大核心 2024年第2期314-318,共5页
为解决眼在手上的机器视觉智能机器人手眼标定精度较低的问题,提出了一种改进灰狼算法的手眼标定方法。首先建立了眼在手的机器视觉智能机器人的手眼标定数学模型,通过分析影响手眼标定误差的因素,提出一种用于降低手眼标定误差的拍照... 为解决眼在手上的机器视觉智能机器人手眼标定精度较低的问题,提出了一种改进灰狼算法的手眼标定方法。首先建立了眼在手的机器视觉智能机器人的手眼标定数学模型,通过分析影响手眼标定误差的因素,提出一种用于降低手眼标定误差的拍照位姿生成方案。然后,融合维度学习和差分进化策略,利用改进的灰狼算法对经由传统手眼标定算法求得的解析解进行非线性优化,避免了传统优化算法在迭代过程中,容易提前收敛,陷入局部最优解等缺陷。最后利用实物设备进行手眼标定实验,实验结果证明了该方法对降低手眼标定误差的可行性和有效性。 展开更多
关键词 智能机器人 手眼标定 非线性优化 灰狼算法 学习
在线阅读 下载PDF
基于XGBoost和改进灰狼优化算法的催化裂化汽油精制装置的辛烷值损失模型分析 被引量:10
7
作者 陈延展 胡浩 +1 位作者 任紫畅 成艾国 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2022年第1期208-219,共12页
为了降低催化裂化汽油精制装置的辛烷值损失,基于机器学习技术和改进灰狼优化算法建立了汽油辛烷值损失的预测和优化模型。首先通过Pearson相关系数法、最大互信息系数法(MIC)和基于随机森林的特征选择方法分别对影响汽油辛烷值的367个... 为了降低催化裂化汽油精制装置的辛烷值损失,基于机器学习技术和改进灰狼优化算法建立了汽油辛烷值损失的预测和优化模型。首先通过Pearson相关系数法、最大互信息系数法(MIC)和基于随机森林的特征选择方法分别对影响汽油辛烷值的367个特征进行训练获得各特征的重要度评分,对3种方法的结果按权重法进行融合获得最终的特征重要度排序,根据特征重要度占比之和超过95%的指标,选出25个特征作为建模主要变量;然后基于XGBoost算法建立汽油辛烷值损失预测模型,对比其他机器学习模型,验证了XGBoost在测试集上的预测性能最优,其均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R2)分别为1.3197、0.3581和0.9981;最后采用汽油辛烷值损失值与主要变量的映射函数作为目标函数,建立关于汽油辛烷值损失值最小的单目标优化模型,为了提高模型的求解速率和准确度,基于sigmoid函数的收敛因子调整策略和个体更新的差分变异策略,提出了一种改进的差分灰狼优化算法。结果表明,优化后的样本辛烷值损失值均减小到0.4左右,同时86.15%的样本辛烷值损失降幅在60%~80%之间,说明建立的优化模型和所提出的改进差分灰狼优化算法是合理的。通过数据挖掘技术建立的降低汽油辛烷值损失模型可以尽量减少汽油精制过程中的辛烷值损失,为石化企业和运营商提供决策分析。 展开更多
关键词 辛烷值损失模型 权重法特征重要融合 XGBoost模型 改进的差分灰狼优化算法
在线阅读 下载PDF
基于改进CPSO算法的区域电热综合能源系统经济调度 被引量:55
8
作者 刘洪 陈星屹 +1 位作者 李吉峰 徐科 《电力自动化设备》 EI CSCD 北大核心 2017年第6期193-200,共8页
针对我国北方地区"以热定电"模式造成大规模弃风与调度经济性较差等问题,建立了区域电热综合能源系统日前经济调度模型。首先,构建了电储能、热储能和电动汽车的经济性模型,改进了风电折算成本的描述方法;然后,综合考虑了弃... 针对我国北方地区"以热定电"模式造成大规模弃风与调度经济性较差等问题,建立了区域电热综合能源系统日前经济调度模型。首先,构建了电储能、热储能和电动汽车的经济性模型,改进了风电折算成本的描述方法;然后,综合考虑了弃风成本、电动汽车调度成本、电储能和热储能损耗成本、环境污染成本等,构建了区域综合能源系统的调度成本模型;最后,利用信息熵衡量粒子的丰富度,并结合贪心变异策略提出基于粒子维度熵的改进混沌粒子群优化算法。算例结果表明,所提算法在保证优越收敛性的同时可有效分析各设备单元在经济调度和消纳弃风方面的作用,验证了模型和算法的有效性与实用性。 展开更多
关键词 区域综合能源系统 风电消纳 储能 经济调 成本模型 粒子 改进混沌粒子群优化算法 贪心变异策略
在线阅读 下载PDF
环境选择的双种群约束多目标狼群算法
9
作者 吕莉 杨凌锋 +3 位作者 肖人彬 孟振宇 崔志华 王晖 《计算机工程与应用》 北大核心 2025年第16期116-131,共16页
针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment... 针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment selection,DCMOWPA-ES)。引入双种群约束处理方法给种群设置不同的搜索偏好,主种群运用可行性准则优先保留可行解,次种群通过ε约束探索不可行区域并将搜索结果传递给主种群,让算法能较好应对复杂的不可行区域,保障算法的可行性;提出维度选择的随机游走策略,使人工狼可自主选择游走方向,提高种群的全局搜索能力;设计精英学习的步长调整机制,人工狼通过向头狼学习的方式提升种群的局部搜索能力,确保算法的收敛性;采用环境选择的狼群更新策略,根据人工狼被支配的情况和所处位置的密度信息对其赋值,选择被支配数少且密度信息小的人工狼作为优秀个体,改善算法的多样性。为验证算法性能,将DCMOWPA-ES与六种新兴约束多目标优化算法在两组约束多目标测试集和汽车侧面碰撞设计问题上进行对比实验。实验结果表明,DCMOWPA-ES算法具备较好的可行性、收敛性和多样性。 展开更多
关键词 狼群算法 双种群约束 选择 精英学习 环境选择 约束多目标优化
在线阅读 下载PDF
基于改进GWO-ELM的热轧带钢卷取温度预测 被引量:8
10
作者 张帅 王俊杰 +1 位作者 李爱莲 崔桂梅 《电子测量技术》 北大核心 2021年第22期50-55,共6页
卷取温度控制精度是影响带钢产品性能的主要因素之一,提高卷取温度控制精度和保证卷取命中率是热轧领域的重点问题。针对某钢厂现有的卷取温度设定模型中存在个别钢种命中率低的问题,结合数据挖掘及现场专家经验,提出了一种基于灰狼优... 卷取温度控制精度是影响带钢产品性能的主要因素之一,提高卷取温度控制精度和保证卷取命中率是热轧领域的重点问题。针对某钢厂现有的卷取温度设定模型中存在个别钢种命中率低的问题,结合数据挖掘及现场专家经验,提出了一种基于灰狼优化极限学习机的新建模思路,并引入Henon映射、小孔成像策略和权重因子策略来改进灰狼算法,建立了基于改进灰狼优化极限学习机(IGWO-ELM)的热轧带钢卷取温度预测模型,并与ELM模型、GA-ELM模型和GWO-ELM模型进行对比。模型结果表明:建立的IGWO-ELM模型,预测卷取温度在±3℃之内的命中率为91.1%,在±4℃之内的命中率为96.7%,均好于对比模型,具有广泛的实际应用前景。 展开更多
关键词 卷取温预测 改进灰狼优化算法 极限学习 热轧
在线阅读 下载PDF
适于高维数据的多标记学习层次树模型 被引量:1
11
作者 万润君 郭嗣琮 +1 位作者 刘海涛 曾繁慧 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2022年第1期73-78,共6页
为解决多标记学习中的维度灾难问题,采用分而治之的方法,充分考虑标记间的相关性,提出一种基于改进快速密度聚类的多标记学习层次树模型(ML-HTM).该模型降低了聚类过程中的计算复杂度,提高了多标记学习效率.为检验模型效果,在6个高维数... 为解决多标记学习中的维度灾难问题,采用分而治之的方法,充分考虑标记间的相关性,提出一种基于改进快速密度聚类的多标记学习层次树模型(ML-HTM).该模型降低了聚类过程中的计算复杂度,提高了多标记学习效率.为检验模型效果,在6个高维数据集、12个多标记分类评价指标上进行多标记学习实验,并与6种经典多标记学习算法的评价指标值进行算法对比.实验结果表明,该模型对多标记学习中高维数据的处理,明显提高了预测性能和学习效率,充分挖掘标记间的相关性,使得标记预测的结果更加准确. 展开更多
关键词 多标记学习 灾难 改进的快速密聚类算法 数据挖掘 ML-HTM模型
在线阅读 下载PDF
基于IMLZC和SOA-ELM的轴承损伤识别方法
12
作者 龙有强 姜峰 《机电工程》 北大核心 2025年第4期726-734,共9页
现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测... 现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测量指标对信号复杂度变化敏感的特点,将其用于提取滚动轴承振动信号的故障特征以构造特征矩阵;然后,利用海鸥优化算法对极限学习机(ELM)的关键参数进行了优化,建立了参数自适应优化的ELM分类模型;最后,将故障特征输入至SOA-ELM分类模型中进行了训练和测试,完成了滚动轴承不同故障状态的智能诊断和故障程度评估,利用滚动轴承和自吸式离心泵损伤振动信号对IMLZC-SOA-ELM模型的实用性和泛化性开展了研究,并将其与其他特征提取模型开展了对比。研究结果表明:基于IMLZC-SOA-ELM的故障诊断方法不仅能够准确识别滚动轴承的故障,而且能判断故障的严重程度,该故障诊断模型在诊断滚动轴承的故障时分别取得了100%和98.4%的识别准确率,平均识别准确率达到了99.9%,能够有效识别滚动轴承的故障类型和故障程度。与其他特征提取方法相比,IMLZC-SOA-ELM模型具有更高的识别准确率,更适合于滚动轴承的故障识别。 展开更多
关键词 滚动轴承 自吸式离心泵 故障诊断 故障程和损伤程 改进多尺Lempel-Ziv复杂 海鸥优化算法 参数最优极限学习
在线阅读 下载PDF
基于IGWO-VMD-EMD-KELM联合预测模型的海上短期风速预测
13
作者 刘轲 张潇阳 +4 位作者 贾子晖 周彩凤 程浩宇 林瑞阳 魏子宸 《绿色科技》 2025年第10期222-228,共7页
准确、可靠的风速预测有利于保障电力系统的安全运行。为提高预测精度,提出一种融合变分模态分解(VMD)、经验模态分解(EMD)、改进灰狼优化算法(IGWO)以及核极限学习机(KELM)的短期风速预测模型。首先利用IGWO对VMD参数进行智能优化。之... 准确、可靠的风速预测有利于保障电力系统的安全运行。为提高预测精度,提出一种融合变分模态分解(VMD)、经验模态分解(EMD)、改进灰狼优化算法(IGWO)以及核极限学习机(KELM)的短期风速预测模型。首先利用IGWO对VMD参数进行智能优化。之后利用VMD将风速数据分解为若干子序列和残差项。针对残差项具有较强非平稳性的问题,利用EMD对残差项进一步分解。最后对各子序列分别利用KELM模型进行预测,并将各子序列预测结果叠加得到最终预测结果。结果表明:该模型的评价指标R 2达到了98.865%,相较于其他对比模型具有更高的预测精度。 展开更多
关键词 风速预测 变分模态分解 经验模态分解 改进灰狼优化算法 核极限学习
在线阅读 下载PDF
基于DIGWO-VMD-CMPE的轴承故障识别方法
14
作者 辛昊 鲁玉军 朱轩逸 《机电工程》 CAS 北大核心 2024年第2期205-215,共11页
针对滚动轴承故障信号特征提取困难和识别准确率低的问题,提出了一种基于维度学习的改进灰狼优化算法(DIGWO)优化变分模态分解(VMD)和复合多尺度排列熵(CMPE)的轴承故障识别方法。首先,采用基于维度学习的狩猎(DLH)搜索策略、余弦收敛因... 针对滚动轴承故障信号特征提取困难和识别准确率低的问题,提出了一种基于维度学习的改进灰狼优化算法(DIGWO)优化变分模态分解(VMD)和复合多尺度排列熵(CMPE)的轴承故障识别方法。首先,采用基于维度学习的狩猎(DLH)搜索策略、余弦收敛因子a和个体狼ω位置更新的方法将灰狼优化算法(GWO)改进为DIGWO,并利用DIGWO算法的自适应性优化VMD分解,得到了多个本征模态函数(IMFs);然后,利用复合多尺度排列熵计算IMFs的特征值,选取适当维数的特征,构建了故障特征向量;最后,利用DIGWO算法优化支持向量机(SVM)的惩罚系数C和径向基函数g,建立了DIGWO-SVM滚动轴承故障诊断分类器,并利用滚动轴承的振动数据验证了算法的有效性。研究结果表明:基于CMPE的DIGWO-SVM滚动轴承故障诊断方法能够有效地识别轴承的运行状况,识别准确率达到了99.42%,相较于PSO-SVM、SSA-SVM方法提高了7.75%、1.68%,证明了该方法的分类性能在滚动轴承故障诊断中更具优势。 展开更多
关键词 基于维度学习的改进灰狼优化算法 变分模态分解 复合多尺排列熵 支持向量机 本征模态函数 基于维学习的狩猎
在线阅读 下载PDF
基于IGWO-MKELM的锂离子电池剩余使用寿命预测 被引量:2
15
作者 宋健正 刘洋 +1 位作者 崔来熙 张梦迪 《电源学报》 CSCD 北大核心 2023年第1期168-176,共9页
随着锂离子电池在储能系统中比例迅速增大,为避免因电池性能退化导致的事故,如何准确预测锂离子电池剩余使用寿命就成为保障储能系统可靠运行的关键。针对锂离子电池剩余使用寿命预测的问题,提出一种改进灰狼优化多核极限学习机(IGWO-MK... 随着锂离子电池在储能系统中比例迅速增大,为避免因电池性能退化导致的事故,如何准确预测锂离子电池剩余使用寿命就成为保障储能系统可靠运行的关键。针对锂离子电池剩余使用寿命预测的问题,提出一种改进灰狼优化多核极限学习机(IGWO-MKELM)预测方法。首先从电池充放电过程中提取能够表征电池寿命退化的间接健康因子作为输入量,然后采用改进灰狼算法对多核极限学习机参数进行寻优,建立改进灰狼优化多核极限学习机预测方法,最后使用NASA电池数据集进行仿真实验。结果表明,IGWO-MKELM方法可以更加精确地预测锂离子电池剩余寿命。 展开更多
关键词 锂离子电池 剩余使用寿命 间接健康因子 改进灰狼优化算法 多核极限学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部