期刊文献+
共找到371篇文章
< 1 2 19 >
每页显示 20 50 100
基于张量字典学习的高光谱图像稀疏表示分类 被引量:2
1
作者 宫学亮 李玉 +2 位作者 贾淑涵 赵泉华 王丽英 《光谱学与光谱分析》 北大核心 2025年第3期798-807,共10页
高光谱图像因其蕴含十分丰富的光谱和空间信息已被广泛应用于生产生活的各个领域。为了充分挖掘高光谱图像中蕴含的光谱和空间信息,从高光谱数据固有的三维属性出发,以空-谱张量为基本处理单元,提出一种基于张量字典学习的稀疏表示分类(... 高光谱图像因其蕴含十分丰富的光谱和空间信息已被广泛应用于生产生活的各个领域。为了充分挖掘高光谱图像中蕴含的光谱和空间信息,从高光谱数据固有的三维属性出发,以空-谱张量为基本处理单元,提出一种基于张量字典学习的稀疏表示分类(Tensor-DLSRC)算法,以提高高光谱图像分类精度。首先,构建以像素及其空间邻域像素光谱向量组成的像素空-谱张量;其次,将作为训练样本像素的空-谱张量按照不同维度展开成矩阵,并以其列向量均值作为字典原子组成初始化张量字典;同时,在张量稀疏性约束条件下构建张量稀疏表示(Tensor-SR)模型,并利用张量字典学习算法学习一组能够精确刻画该类张量空-谱特征的字靛矩阵;最后,对待分类像素利用Tensor-SR模型求解其空-谱张量的稀疏表示系数张量,根据重构残差最小化原则确定该像素类别。为了分析参数对提出算法分类精度的影响,在进行分类对比实验之前,通过一系列实验分别讨论训练样本数M、邻域窗口尺寸(2δ+1)×(2δ+1)、字典学习阶段的稀疏度μ1和稀疏表示阶段的稀疏度μ2等参数对总体分类精度(OA)的影响。为了验证提出算法的有效性,分别在Indian Pines、Salinas和Xuzhou三个高光谱数据上进行实验,对比分析本算法与基于光谱向量的SRC算法和DLSRC算法、增加邻域空间信息的JSRC算法和DLJSRC算法和基于空-谱张量的Tensor-DLSRC算法等五种算法的分类结果,并采用基于混淆矩阵的平均准确率(APR)、平均精度(PA)、OA和Kappa系数对分类结果定量分析。所提出的Tensor-DLSRC算法在OA和Kappa系数的平均值水平是六种算法中最高的,且具有最小的标准差,说明本算法与五种其他算法相比能够提供更准确且稳定的分类结果。 展开更多
关键词 高光谱图像 空-谱张量 稀疏表示 张量字典学习 张量稀疏表示分类
在线阅读 下载PDF
引信目标与干扰信号稀疏分类识别方法 被引量:1
2
作者 刘冰 郝新红 +2 位作者 秦高林 时明心 刘佳琪 《北京航空航天大学学报》 北大核心 2025年第2期498-506,共9页
为提升复杂电磁环境战场中调频无线电引信的抗干扰能力,基于稀疏表示理论,将稀疏表示系数重构用于调频无线电的目标和干扰信号分类识别,提出一种目标信号和扫频式干扰信号的分类识别方法,解决了调频无线电引信的抗干扰能力不足的问题。... 为提升复杂电磁环境战场中调频无线电引信的抗干扰能力,基于稀疏表示理论,将稀疏表示系数重构用于调频无线电的目标和干扰信号分类识别,提出一种目标信号和扫频式干扰信号的分类识别方法,解决了调频无线电引信的抗干扰能力不足的问题。采集了模拟目标及干扰信号作用于无线电引信的检波端输出信号,构建了目标信号过完备字典和干扰信号过完备字典,分别将测试信号在2类字典上进行稀疏分解并重构,依据重构误差对测试样本类别进行识别。结果表明:基于稀疏表示的调频无线电引信目标和干扰信号分类识别方法,可以对目标和干扰信号进行有效的识别,同时能够满足较低的虚警概率。研究成果对于调频无线电引信在复杂电磁环境中的抗干扰具有重要的借鉴意义。 展开更多
关键词 调频无线电引信 抗干扰 电子战 稀疏表示 信号分类
在线阅读 下载PDF
基于自适应矩阵的核联合稀疏表示高光谱图像分类
3
作者 陈善学 夏馨 《遥感信息》 CSCD 北大核心 2024年第2期19-27,共9页
针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像... 针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像素,充分融合了形状可变的空间信息与非线性光谱信息。在分类阶段,考虑自适应矩阵和高光谱图像非线性,采用对数欧式核函数,构建了核联合稀疏表示模型,以获得重构误差。同时利用字典空间信息构建了矩阵相关性,引入平衡参数实现了稀疏重构误差与矩阵相关性的联合分类。在两个数据集上的实验结果表明,该算法充分利用了高光谱图像的空间信息、光谱信息,能够有效提高分类精度。 展开更多
关键词 高光谱图像分类 核联合稀疏表示 自适应邻域块 自适应矩阵 矩阵相关性
在线阅读 下载PDF
改进的局部稀疏表示分类算法及其在人脸识别中的应用 被引量:6
4
作者 尹贺峰 吴小俊 陈素根 《计算机科学》 CSCD 北大核心 2015年第8期48-51,85,共5页
近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出... 近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出一种新的局部稀疏表示分类(Local SRC,LSRC)方法。该方法针对每个测试样本,根据测试样本和训练样本稀疏系数之间的相似性来选择部分训练样本,由这些训练样本组成字典,然后在这个字典上对测试样本进行稀疏分解。该方法性能相比于原始LSRC方法更稳定。在ORL、Yale和AR人脸库上的实验结果表明,该方法的效果优于SRC和LSRC。 展开更多
关键词 稀疏表示分类 局部稀疏表示分类 稀疏系数 相似性 人脸识别
在线阅读 下载PDF
基于图像块分类稀疏表示的超分辨率重构算法 被引量:52
5
作者 练秋生 张伟 《电子学报》 EI CAS CSCD 北大核心 2012年第5期920-925,共6页
目前基于图像块稀疏表示的超分辨率重构算法对所有图像块都用同一字典表示,不能反映不同类型图像块间的差别.针对这一缺点,本文提出基于图像块分类稀疏表示的方法.该方法先利用图像局部特征将图像块分为平滑、边缘和不规则结构三种类型... 目前基于图像块稀疏表示的超分辨率重构算法对所有图像块都用同一字典表示,不能反映不同类型图像块间的差别.针对这一缺点,本文提出基于图像块分类稀疏表示的方法.该方法先利用图像局部特征将图像块分为平滑、边缘和不规则结构三种类型,其中边缘块细分为多个方向.然后利用稀疏表示方法对边缘和不规则结构块分别训练各自对应的低分辨率和高分辨率字典.重构时对平滑块利用简单双三次插值方法,边缘和不规则结构块由其对应的高、低分辨率字典通过正交匹配追踪算法重构.实验结果表明,与单字典稀疏表示算法相比,本文算法对图像边缘部分重构质量明显改善,同时重构速度显著提高. 展开更多
关键词 超分辨率 稀疏表示 分类 正交匹配追踪
在线阅读 下载PDF
基于包级空间多示例稀疏表示的图像分类算法 被引量:6
6
作者 杨红红 曲仕茹 金红霞 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第4期690-697,共8页
基于多示例学习框架的图像分类算法以其特有的多义性对象表示能力在图像分类中表现出较好的分类效果。但传统的包级空间多示例学习算法在特征选择过程中存在忽略小目标概念区域且包含大量冗余信息的问题,造成部分训练包信息损失,影响分... 基于多示例学习框架的图像分类算法以其特有的多义性对象表示能力在图像分类中表现出较好的分类效果。但传统的包级空间多示例学习算法在特征选择过程中存在忽略小目标概念区域且包含大量冗余信息的问题,造成部分训练包信息损失,影响分类性能。为此,基于多示例学习与稀疏编码理论提出1种改进的多示例图像分类算法。该算法首先根据同类样本示例聚为一簇的特性,应用聚类算法构造每类图像的视觉词汇,并利用负包中所有示例都为负的特性,对视觉词汇进行约束,消除冗余信息;依据训练样本示例与视觉词汇的相似度,获得每类训练样本的包特征向量。然后,基于稀疏编码理论,对训练包中的包特征向量进行稀疏编码,获得每1类训练样本的字典矩阵。最后,对待分类样本特征进行稀疏线性组合,预测待分类样本的类别标签。通过对COREL数据集图像进行测试,结果表明,与其他多示例学习算法相比,文中提出的方法能较好地解决图像分类问题,具有较高的分类精度。 展开更多
关键词 包特征向量 稀疏表示 多示例学习 图像分类
在线阅读 下载PDF
基于低秩稀疏分解与协作表示的图像分类算法 被引量:2
7
作者 张旭 蒋建国 +1 位作者 洪日昌 杜跃 《计算机科学》 CSCD 北大核心 2016年第7期83-88,共6页
目前,大部分图像分类算法为了获取较高的性能均需要充分的训练学习过程,然而在实际应用中,往往存在训练样本不足及过拟合等问题。为了避免上述问题出现,在朴素贝叶斯最近邻分类算法的原理框架下,基于非负稀疏编码、低秩稀疏分解以及协... 目前,大部分图像分类算法为了获取较高的性能均需要充分的训练学习过程,然而在实际应用中,往往存在训练样本不足及过拟合等问题。为了避免上述问题出现,在朴素贝叶斯最近邻分类算法的原理框架下,基于非负稀疏编码、低秩稀疏分解以及协作表示提出一种非参数学习的图像分类算法。首先,基于非负稀疏编码和最大值汇聚操作表示图像信息,并构建具有低秩性质的同类训练图像集的局部特征矩阵;其次,采用低秩稀疏分解结合别类标签信息构建两类视觉词典以充分利用同类图像的相关性和差异性;最后基于协作表示表征测试图像并进行分类决策,实验结果验证了所提算法的有效性。 展开更多
关键词 图像分类 视觉词袋 稀疏编码 低秩稀疏分解 协作表示
在线阅读 下载PDF
多观测样本联合信息加权稀疏表示分类算法 被引量:3
8
作者 胡正平 赵艳霜 赵淑欢 《信号处理》 CSCD 北大核心 2014年第4期413-421,共9页
多观测样本分类问题中,同一对象的多观测样本均看作一个整体进行识别,其同等看待各个观测样本。考虑到其每个观测样本包含判别信息量不同,针对如何有效利用其可信度问题,提出基于观测样本联合加权稀疏表示多观测样本分类算法。首先将多... 多观测样本分类问题中,同一对象的多观测样本均看作一个整体进行识别,其同等看待各个观测样本。考虑到其每个观测样本包含判别信息量不同,针对如何有效利用其可信度问题,提出基于观测样本联合加权稀疏表示多观测样本分类算法。首先将多观测样本分解成单样本,分别对各个样本进行稀疏求解得到其各自的稀疏度和残差,进而联合二者确定其相应可信度。然后给各观测样本进行可信度加权,重构出加权多观测样本。最后,再采用整体稀疏表示对其进行分类。在ETH-80物体数据库、CMU-PIE人脸数据库和BANCA数据库上进行大量对比实验,实验结果证明该算法的有效性,提高识别精度的同时使算法的鲁棒性得到保证。 展开更多
关键词 多观测样本分类 联合稀疏表示 重构样本 可信度加权 判别信息
在线阅读 下载PDF
基于自适应权重的多重稀疏表示分类算法 被引量:2
9
作者 段刚龙 魏龙 李妮 《计算机工程与应用》 CSCD 2014年第8期173-177,246,共6页
提出了一种基于多特征字典的稀疏表示算法。该算法针对SRC的单特征鉴别性较弱这一不足,对样本提出多个不同特征并分别进行相应的稀疏表示。并根据SRC算法计算各个特征的鉴别性,自适应地学习出稀疏权重并进行线性加权,从而提高分类的性... 提出了一种基于多特征字典的稀疏表示算法。该算法针对SRC的单特征鉴别性较弱这一不足,对样本提出多个不同特征并分别进行相应的稀疏表示。并根据SRC算法计算各个特征的鉴别性,自适应地学习出稀疏权重并进行线性加权,从而提高分类的性能。实验表明,基于自适应权重的多重稀疏表示分类算法,具有更好的分类效果。 展开更多
关键词 自适应权重 多重稀疏表示 稀疏表示分类器(SRC)
在线阅读 下载PDF
带PCA卷积的稀疏表示图像分类算法 被引量:5
10
作者 魏明俊 许道云 徐梦珂 《计算机工程与应用》 CSCD 北大核心 2017年第14期155-160,共6页
针对不同卷积核可以提取不同的图像特征,而卷积核的训练比较困难这一问题,提出一种带主成分分析(PCA)卷积的稀疏表示分类算法。先对训练样本集做分片去均值化处理,然后直接应用PCA算法提取所有分片的前K个特征向量作为卷积核,再用这些... 针对不同卷积核可以提取不同的图像特征,而卷积核的训练比较困难这一问题,提出一种带主成分分析(PCA)卷积的稀疏表示分类算法。先对训练样本集做分片去均值化处理,然后直接应用PCA算法提取所有分片的前K个特征向量作为卷积核,再用这些卷积核对原始图像进行卷积操作;并提出一种自动加权策略,对卷积处理后得到的K个特征图像进行加权叠加操作;最后对特征图像进行分块直方图统计稀疏化,并应用稀疏表示分类算法进行分类。在公共人脸数据集AR、CMU Multi-PIE、ORL以及数字手写体数据集MNIST上与常用分类算法进行对比实验,实验结果表明,带PCA卷积的稀疏表示分类算法具有更高的分类准确率。 展开更多
关键词 稀疏表示 主成分分析卷积核 图像卷积 直方图统计 图像分类
在线阅读 下载PDF
基于稀疏表示的红外空中目标分类算法(英文) 被引量:1
11
作者 金璐 李范鸣 +1 位作者 刘士建 王霄 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2019年第5期578-586,共9页
针对红外空中目标,提出了一种基于稀疏表示的快速分类算法.该工作的技术难点表现在训练样本较少,算法需要具有旋转不变性、较高的抗噪性和实时性.针对这些难点,首先根据红外空中面目标的梯度信息和统计特性,计算出图像主方向,然后将主... 针对红外空中目标,提出了一种基于稀疏表示的快速分类算法.该工作的技术难点表现在训练样本较少,算法需要具有旋转不变性、较高的抗噪性和实时性.针对这些难点,首先根据红外空中面目标的梯度信息和统计特性,计算出图像主方向,然后将主方向旋转至同一参考方向.接着基于稀疏表示原理,把分类问题转化为1范数最小化问题,最后用快速收敛方法得到分类结果.实验结果表明该方法能够达到98.3%的正确率,给测试图像50%的像素叠加噪声后,分类正确率仍大于80%. 展开更多
关键词 红外图像 空中目标 旋转不变性 稀疏表示分类
在线阅读 下载PDF
基于低秩分解的联合动态稀疏表示多观测样本分类算法 被引量:3
12
作者 胡正平 高红霄 赵淑欢 《电子学报》 EI CAS CSCD 北大核心 2015年第3期440-446,共7页
通过互联网易获得同一对象的多个无约束的观测样本,针对如何解决无约束观测样本带来的识别困难及充分利用多观测样本数据信息提高其分类性能问题,提出基于低秩分解的联合动态稀疏表示多观测样本分类算法.该算法首先寻找到一组最佳的图... 通过互联网易获得同一对象的多个无约束的观测样本,针对如何解决无约束观测样本带来的识别困难及充分利用多观测样本数据信息提高其分类性能问题,提出基于低秩分解的联合动态稀疏表示多观测样本分类算法.该算法首先寻找到一组最佳的图像变换域,使得变换图像可以分解成一个低秩矩阵和一个相关的稀疏误差矩阵;然后对低秩矩阵和稀疏误差矩阵分别进行联合动态稀疏表示,以便充分利用类级的相关性和原子级的差异性,即使多观测样本的稀疏表示向量在类级别上分享相同的稀疏模型,而在原子级上采用不同的稀疏模型;最后利用总的稀疏重建误差进行类别判决.在CMU-PIE人脸数据库、ETH-80物体识别数据库、USPS手写体数字数据库和UMIST人脸数据库上进行对比实验,实验结果表明本方法的优越性. 展开更多
关键词 模式识别 多观测样本分类 低秩矩阵恢复 联合动态稀疏表示
在线阅读 下载PDF
面向乳腺病理图像分类的非相干字典学习及稀疏表示算法 被引量:1
13
作者 汤红忠 王翔 +1 位作者 郭雪峰 刘婷 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第8期1368-1375,共8页
针对乳腺病理图像分类,提出一种非相干字典学习及其稀疏表示算法.首先针对不同类别的图像,基于在线字典学习算法分别学习各类特定的子字典;其次利用紧框架建立一种非相干字典学习模型,通过交替投影优化字典的相干性、秩与紧框架性,从而... 针对乳腺病理图像分类,提出一种非相干字典学习及其稀疏表示算法.首先针对不同类别的图像,基于在线字典学习算法分别学习各类特定的子字典;其次利用紧框架建立一种非相干字典学习模型,通过交替投影优化字典的相干性、秩与紧框架性,从而有效地约束字典的格拉姆矩阵与参考格拉姆矩阵的距离,获得判别性更强的非相干字典;最后采用子空间旋转方法优化非相干字典的稀疏表示性能.利用乳腺癌数据集BreaKHis进行实验的结果证明,该算法所学习的非相干字典能平衡字典的判别性与稀疏表示性能,在良性肿瘤与恶性肿瘤图像分类上获得了86.0%的分类精度;在良性肿瘤图像中的腺病与纤维腺瘤的分类上获得92.5%的分类精度. 展开更多
关键词 非相干字典学习 紧框架 稀疏表示 组织病理图像分类
在线阅读 下载PDF
快速稀疏表示分类的人脸识别算法 被引量:4
14
作者 范自柱 《计算机工程与应用》 CSCD 北大核心 2017年第9期1-4,共4页
经典的稀疏表示分类(Sparse Representation for Classification,SRC)算法是一种基于L_1范数最小化问题,它在很多应用场合都能取得很好的分类效果,是目前备受关注的一类识别算法。然而,传统的SRC算法在求解L_1范数最小化问题时,往往计... 经典的稀疏表示分类(Sparse Representation for Classification,SRC)算法是一种基于L_1范数最小化问题,它在很多应用场合都能取得很好的分类效果,是目前备受关注的一类识别算法。然而,传统的SRC算法在求解L_1范数最小化问题时,往往计算效率比较低。为有效解决这个问题,提出了一种快速有效的分类算法,它利用坐标下降方法来实现SRC算法。该方法既可以显著地提高计算效率,又可取得较好的分类结果。在不同人脸库上的实验表明,所提的算法具有良好的应用前景。 展开更多
关键词 稀疏表示 坐标下降算法 分类 人脸识别
在线阅读 下载PDF
基于级联稀疏表示分类器的人脸识别算法 被引量:2
15
作者 杨宇 《工矿自动化》 北大核心 2014年第5期46-48,共3页
针对基于稀疏表示的分类器算法复杂度高、识别速度较慢的问题,提出了基于级联稀疏表示分类器的人脸识别算法。该算法采用级联的思想,通过多次重复使用基于稀疏表示的分类器,逐级精确确定待分类样本所在的类,降低了计算复杂度和识别难度... 针对基于稀疏表示的分类器算法复杂度高、识别速度较慢的问题,提出了基于级联稀疏表示分类器的人脸识别算法。该算法采用级联的思想,通过多次重复使用基于稀疏表示的分类器,逐级精确确定待分类样本所在的类,降低了计算复杂度和识别难度,达到了识别率高、鲁棒性强、识别速度快的目标。 展开更多
关键词 人脸识别 级联稀疏表示分类 识别率 鲁棒性
在线阅读 下载PDF
结构稀疏表示分类目标跟踪算法
16
作者 侯跃恩 李伟光 《计算机科学与探索》 CSCD 北大核心 2016年第7期1035-1043,共9页
为提高目标跟踪算法在复杂条件下的鲁棒性和准确性,研究了一种基于贝叶斯分类的结构稀疏表示目标跟踪算法。首先通过首帧图像获得含有目标与背景模板的稀疏字典和正负样本;然后采用结构稀疏表示的思想对样本进行线性重构,获得其稀疏系数... 为提高目标跟踪算法在复杂条件下的鲁棒性和准确性,研究了一种基于贝叶斯分类的结构稀疏表示目标跟踪算法。首先通过首帧图像获得含有目标与背景模板的稀疏字典和正负样本;然后采用结构稀疏表示的思想对样本进行线性重构,获得其稀疏系数;进而设计一款贝叶斯分类器,分类器通过正负样本的稀疏系数进行训练,并对每个候选目标进行分类,获得其相似度信息;最后采用稀疏表示与增量学习结合的方法对稀疏字典进行更新。将该算法与其他4种先进算法在6组测试视频中进行比较,实验证明了该算法具有更好的性能。 展开更多
关键词 目标跟踪 粒子滤波 稀疏表示 字典 贝叶斯分类
在线阅读 下载PDF
基于低秩正则联合稀疏建模的图像去噪算法
17
作者 查志远 袁鑫 +1 位作者 张嘉超 朱策 《电子与信息学报》 北大核心 2025年第2期561-572,共12页
非局部稀疏表示模型,如联合稀疏(JS)模型、低秩(LR)模型和组稀疏表示(GSR)模型,通过有效利用图像的非局部自相似(NSS)属性,在图像去噪研究中展现出巨大的潜力。流行的基于字典的JS算法在其目标函数中利用松驰的凸惩罚,避免了NP-hard稀... 非局部稀疏表示模型,如联合稀疏(JS)模型、低秩(LR)模型和组稀疏表示(GSR)模型,通过有效利用图像的非局部自相似(NSS)属性,在图像去噪研究中展现出巨大的潜力。流行的基于字典的JS算法在其目标函数中利用松驰的凸惩罚,避免了NP-hard稀疏编码,但只能得到近似的稀疏表示。这种近似的JS模型未能对潜在的图像数据施加低秩性,从而导致图像去噪质量降低。该文提出一种新颖的低秩正则联合稀疏(LRJS)模型,用于求解图像去噪问题。提出的LRJS模型同时利用非局部相似块的LR和JS先验信息,可以增强非局部相似块之间的相关性(即低秩性),从而可以更好地抑制噪声,提升去噪图像的质量。为了提高优化过程的可处理性和鲁棒性,该文设计了一种具有自适应参数调整策略的交替最小化算法来求解目标函数。在两个图像去噪问题(包括高斯噪声去除和泊松噪声去除)上的实验结果表明,提出的LRJS方法在客观度量和视觉感知上均优于许多现有的流行或先进的图像去噪算法,特别是在处理具有高度自相似性的图像数据时表现更为出色。提出的LRJS图像去噪算法的源代码通过以下链接下载:https://pan.baidu.com/s/14bt6u94NBTZXxhWjBHxn6A?pwd=1234,提取码:1234。 展开更多
关键词 图像去噪 泊松去噪 非局部稀疏表示 低秩正则联合稀疏 交替最小化算法 自适应参数
在线阅读 下载PDF
熵权约束稀疏表示的短文本分类算法 被引量:2
18
作者 脱婷 马慧芳 +1 位作者 李志欣 赵卫中 《电子学报》 EI CAS CSCD 北大核心 2020年第11期2131-2137,共7页
针对短文本特征稀疏性问题,提出一种熵权约束稀疏表示的短文本分类方法.考虑到初始字典维数较高,首先,利用Word2vec工具将字典中的词表示成词向量形式,然后根据加权向量平均值对原始字典进行降维.其次,利用一种快速特征子集选择算法去... 针对短文本特征稀疏性问题,提出一种熵权约束稀疏表示的短文本分类方法.考虑到初始字典维数较高,首先,利用Word2vec工具将字典中的词表示成词向量形式,然后根据加权向量平均值对原始字典进行降维.其次,利用一种快速特征子集选择算法去除字典中不相关和冗余短文本,得到过滤后的字典.再次,基于稀疏表示理论在过滤后的字典上,为目标函数设计一种熵权约束的稀疏表示方法,引入拉格朗日乘数法求得目标函数的最优值,从而得到每个类的子空间.最后,在学习到的子空间下通过计算待分类短文本与每个类中短文本的距离,并根据三种分类规则对短文本进行分类.在真实数据集上的大量实验结果表明,本文提出的方法能够有效缓解短文本特征稀疏问题且优于现有短文本分类方法. 展开更多
关键词 短文本分类 词向量 稀疏表示
在线阅读 下载PDF
基于线性谱聚类超像素分割和联合稀疏表示的高光谱图像分类算法 被引量:3
19
作者 魏宏超 王永丽 +1 位作者 丁晓云 陶菊亮 《山东科技大学学报(自然科学版)》 CAS 北大核心 2022年第4期85-97,共13页
为了克服高光谱图像中存在的同类异谱和异类同谱现象对分类精度的影响,减少类间干扰,本研究提出基于线性谱聚类超像素分割和谱聚类的联合稀疏表示分类算法。首先,通过主成分分析对高光谱图像进行降维,利用线性谱聚类超像素分割算法对降... 为了克服高光谱图像中存在的同类异谱和异类同谱现象对分类精度的影响,减少类间干扰,本研究提出基于线性谱聚类超像素分割和谱聚类的联合稀疏表示分类算法。首先,通过主成分分析对高光谱图像进行降维,利用线性谱聚类超像素分割算法对降维后的图像进行超像素分割,并将分割后的超像素块分成标签样本与训练样本。然后,利用谱聚类算法将训练样本分为两类,按规则选取其中一类作为测试样本,利用联合稀疏表示算法获取其表示残差,并将其作为所有训练样本的表示残差,同时计算测试样本与标签样本之间的相关系数。最后,用基于表示残差和相关系数的决策函数对像素进行分类。数值实验结果表明,新算法具有较高的分类精度和鲁棒性。 展开更多
关键词 联合稀疏表示 高光谱图像分类 超像素分割 谱聚类 相关系数
在线阅读 下载PDF
基于非负矩阵分解与稀疏表示的多标签分类算法
20
作者 包永春 张建臣 +1 位作者 杜守信 张军军 《计算机应用》 CSCD 北大核心 2022年第5期1375-1382,共8页
传统的多标签分类算法是以二值标签预测为基础的,而二值标签由于仅能指示数据是否具有相关类别,所含语义信息较少,无法充分表示标签语义信息。为充分挖掘标签空间的语义信息,提出了一种基于非负矩阵分解和稀疏表示的多标签分类算法(MLNS... 传统的多标签分类算法是以二值标签预测为基础的,而二值标签由于仅能指示数据是否具有相关类别,所含语义信息较少,无法充分表示标签语义信息。为充分挖掘标签空间的语义信息,提出了一种基于非负矩阵分解和稀疏表示的多标签分类算法(MLNS)。该算法结合非负矩阵分解与稀疏表示技术,将数据的二值标签转化为实值标签,从而丰富标签语义信息并提升分类效果。首先,对标签空间进行非负矩阵分解以获得标签潜在语义空间,并将标签潜在语义空间与原始特征空间结合以形成新的特征空间;然后,对此特征空间进行稀疏编码来获得样本间的全局相似关系;最后,利用该相似关系重构二值标签向量,从而实现二值标签与实值标签的转化。在5个标准多标签数据集和5个评价指标上将所提算法与MLBGM、ML2、LIFT和MLRWKNN等算法进行对比。实验结果表明,所提MLNS在多标签分类中优于对比的多标签分类算法,在50%的案例中排名第一,在76%的案例中排名前二,在全部的案例中排名前三。 展开更多
关键词 多标签分类 非负矩阵分解 稀疏表示 多输出回归 机器学习
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部