期刊文献+
共找到253篇文章
< 1 2 13 >
每页显示 20 50 100
基于张量字典学习的高光谱图像稀疏表示分类 被引量:2
1
作者 宫学亮 李玉 +2 位作者 贾淑涵 赵泉华 王丽英 《光谱学与光谱分析》 北大核心 2025年第3期798-807,共10页
高光谱图像因其蕴含十分丰富的光谱和空间信息已被广泛应用于生产生活的各个领域。为了充分挖掘高光谱图像中蕴含的光谱和空间信息,从高光谱数据固有的三维属性出发,以空-谱张量为基本处理单元,提出一种基于张量字典学习的稀疏表示分类(... 高光谱图像因其蕴含十分丰富的光谱和空间信息已被广泛应用于生产生活的各个领域。为了充分挖掘高光谱图像中蕴含的光谱和空间信息,从高光谱数据固有的三维属性出发,以空-谱张量为基本处理单元,提出一种基于张量字典学习的稀疏表示分类(Tensor-DLSRC)算法,以提高高光谱图像分类精度。首先,构建以像素及其空间邻域像素光谱向量组成的像素空-谱张量;其次,将作为训练样本像素的空-谱张量按照不同维度展开成矩阵,并以其列向量均值作为字典原子组成初始化张量字典;同时,在张量稀疏性约束条件下构建张量稀疏表示(Tensor-SR)模型,并利用张量字典学习算法学习一组能够精确刻画该类张量空-谱特征的字靛矩阵;最后,对待分类像素利用Tensor-SR模型求解其空-谱张量的稀疏表示系数张量,根据重构残差最小化原则确定该像素类别。为了分析参数对提出算法分类精度的影响,在进行分类对比实验之前,通过一系列实验分别讨论训练样本数M、邻域窗口尺寸(2δ+1)×(2δ+1)、字典学习阶段的稀疏度μ1和稀疏表示阶段的稀疏度μ2等参数对总体分类精度(OA)的影响。为了验证提出算法的有效性,分别在Indian Pines、Salinas和Xuzhou三个高光谱数据上进行实验,对比分析本算法与基于光谱向量的SRC算法和DLSRC算法、增加邻域空间信息的JSRC算法和DLJSRC算法和基于空-谱张量的Tensor-DLSRC算法等五种算法的分类结果,并采用基于混淆矩阵的平均准确率(APR)、平均精度(PA)、OA和Kappa系数对分类结果定量分析。所提出的Tensor-DLSRC算法在OA和Kappa系数的平均值水平是六种算法中最高的,且具有最小的标准差,说明本算法与五种其他算法相比能够提供更准确且稳定的分类结果。 展开更多
关键词 高光谱图像 空-谱张量 稀疏表示 张量字典学习 张量稀疏表示分类
在线阅读 下载PDF
引信目标与干扰信号稀疏分类识别方法 被引量:1
2
作者 刘冰 郝新红 +2 位作者 秦高林 时明心 刘佳琪 《北京航空航天大学学报》 北大核心 2025年第2期498-506,共9页
为提升复杂电磁环境战场中调频无线电引信的抗干扰能力,基于稀疏表示理论,将稀疏表示系数重构用于调频无线电的目标和干扰信号分类识别,提出一种目标信号和扫频式干扰信号的分类识别方法,解决了调频无线电引信的抗干扰能力不足的问题。... 为提升复杂电磁环境战场中调频无线电引信的抗干扰能力,基于稀疏表示理论,将稀疏表示系数重构用于调频无线电的目标和干扰信号分类识别,提出一种目标信号和扫频式干扰信号的分类识别方法,解决了调频无线电引信的抗干扰能力不足的问题。采集了模拟目标及干扰信号作用于无线电引信的检波端输出信号,构建了目标信号过完备字典和干扰信号过完备字典,分别将测试信号在2类字典上进行稀疏分解并重构,依据重构误差对测试样本类别进行识别。结果表明:基于稀疏表示的调频无线电引信目标和干扰信号分类识别方法,可以对目标和干扰信号进行有效的识别,同时能够满足较低的虚警概率。研究成果对于调频无线电引信在复杂电磁环境中的抗干扰具有重要的借鉴意义。 展开更多
关键词 调频无线电引信 抗干扰 电子战 稀疏表示 信号分类
在线阅读 下载PDF
基于自适应矩阵的核联合稀疏表示高光谱图像分类
3
作者 陈善学 夏馨 《遥感信息》 CSCD 北大核心 2024年第2期19-27,共9页
针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像... 针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像素,充分融合了形状可变的空间信息与非线性光谱信息。在分类阶段,考虑自适应矩阵和高光谱图像非线性,采用对数欧式核函数,构建了核联合稀疏表示模型,以获得重构误差。同时利用字典空间信息构建了矩阵相关性,引入平衡参数实现了稀疏重构误差与矩阵相关性的联合分类。在两个数据集上的实验结果表明,该算法充分利用了高光谱图像的空间信息、光谱信息,能够有效提高分类精度。 展开更多
关键词 高光谱图像分类 核联合稀疏表示 自适应邻域块 自适应矩阵 矩阵相关性
在线阅读 下载PDF
基于K-SVD和正交匹配追踪稀疏表示的稻飞虱图像分类方法 被引量:15
4
作者 林相泽 张俊媛 +1 位作者 朱赛华 刘德营 《农业工程学报》 EI CAS CSCD 北大核心 2019年第19期216-222,共7页
针对当前稻飞虱图像分类研究中存在图像识别速度慢、分类精度低的不足,该文提出一种基于K-SVD和正交匹配追踪(orthogonal matching pursuit,OMP)稀疏表示的稻飞虱图像分类方法。首先,根据稻飞虱的趋光性特点,使用团队自主研发的野外昆... 针对当前稻飞虱图像分类研究中存在图像识别速度慢、分类精度低的不足,该文提出一种基于K-SVD和正交匹配追踪(orthogonal matching pursuit,OMP)稀疏表示的稻飞虱图像分类方法。首先,根据稻飞虱的趋光性特点,使用团队自主研发的野外昆虫图像采集装置自动获取稻田害虫图像;然后,利用K-SVD算法对稻飞虱图像特征的过完备字典进行更新构造,结合OMP算法对原始输入图像的特征信号进行稀疏表示;最后,通过求解输入图像的重构误差对昆虫图像进行分类。在相同的试验条件下,与传统的图像分类算法(SVM、BP神经网络)进行比较。实验结果表明,该文提出的基于K-SVD和OMP算法的稻飞虱图像稀疏表示分类方法可对稻飞虱与非稻飞虱进行快速准确的分类,分类速度达到6.0帧/s,平均分类精度达到93.7%。与SVM和BP神经网络相比,分类速度分别提高了5和5.5帧/s;分类精度分别提高了15.7和28.2个百分点,为稻飞虱的防治预警工作提供了信息与技术支持。 展开更多
关键词 图像处理 分类 稻飞虱 稀疏表示 K-SVD 正交匹配追踪
在线阅读 下载PDF
基于稀疏表示字典学习的植物分类方法 被引量:8
5
作者 张善文 孔韦韦 王震 《浙江农业学报》 CSCD 北大核心 2017年第2期338-344,共7页
基于叶片图像的植物分类方法研究是植物分类学的一个重要研究方向。由于叶片图像的复杂性和对季节、光照等条件比较敏感,使得现有的植物分类方法的分类效果不佳。该文提出了一种基于稀疏表示字典学习的植物物种识别方法,该方法将植物分... 基于叶片图像的植物分类方法研究是植物分类学的一个重要研究方向。由于叶片图像的复杂性和对季节、光照等条件比较敏感,使得现有的植物分类方法的分类效果不佳。该文提出了一种基于稀疏表示字典学习的植物物种识别方法,该方法将植物分类问题转化为求解待分类叶片图像对于训练样本植物叶片图像的稀疏表示问题;再利用面向植物叶片图像类别的字典学习,寻求一个较小的、并经过优化的超完备字典来计算待识别叶片图像的稀疏表示。与已有植物分类方法比较,该方法的创新点为直接对原始叶片图像进行处理,不需要从每幅叶片图像中提取颜色、纹理和形状等分类特征,从而极大降低了植物分类方法的复杂度,提高了分类方法的实时性和鲁棒性。在公开的植物叶片图像数据库中对50类植物叶片图像进行了分类实验,识别率高达92%以上。 展开更多
关键词 植物分类 叶片图像 稀疏表示 字典学习
在线阅读 下载PDF
稀疏表示分类中遮挡字典构造方法的改进 被引量:6
6
作者 朱明旱 李树涛 叶华 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第11期2064-2069,2078,共7页
针对稀疏表示分类算法中遮挡字典维数高且无冗余的问题,提出一种遮挡字典构造方法.首先通过图像分块得到各级的遮挡基图像;然后将所有互不相同的遮挡基图像按字典顺序转化为向量,并用这些向量作为遮挡字典的列,从而构造出维数相对较低... 针对稀疏表示分类算法中遮挡字典维数高且无冗余的问题,提出一种遮挡字典构造方法.首先通过图像分块得到各级的遮挡基图像;然后将所有互不相同的遮挡基图像按字典顺序转化为向量,并用这些向量作为遮挡字典的列,从而构造出维数相对较低且具有一定冗余度的遮挡字典.实验结果表明,该方法不仅明显提高了稀疏表示分类算法对遮挡人脸的识别率,而且还能通过减少图像的分块级数降低稀疏分解的耗时量,提高运算效率. 展开更多
关键词 稀疏表示分类 遮挡字典 人脸识别
在线阅读 下载PDF
基于稀疏表示全局字典学习的图像分类方法 被引量:9
7
作者 蒲国林 邱玉辉 《计算机应用》 CSCD 北大核心 2015年第2期499-501,514,共4页
针对传统的稀疏表示字典学习图像分类方法在大规模分布式环境下效率低下的问题,设计一种基于稀疏表示全局字典的图像学习方法。将传统的字典学习步骤分布到并行节点上,使用凸优化方法在节点上学习局部字典并实时更新全局字典,从而提高... 针对传统的稀疏表示字典学习图像分类方法在大规模分布式环境下效率低下的问题,设计一种基于稀疏表示全局字典的图像学习方法。将传统的字典学习步骤分布到并行节点上,使用凸优化方法在节点上学习局部字典并实时更新全局字典,从而提高字典学习效率和大规模数据的分类效率。最后在MapReduce平台上进行并行化实验,结果显示该方法在不影响分类精度的情况下对大规模分布式数据的分类有明显的加速,可以更高效地运用于各种大规模图像分类任务中。 展开更多
关键词 字典学习 图像分类 稀疏表示 大规模数据 MAPREDUCE
在线阅读 下载PDF
傅里叶中红外光谱结合稀疏表示分类方法鉴别小麦赤霉病感染等级 被引量:4
8
作者 梁琨 张夏夏 +3 位作者 丁静 徐剑宏 韩东燊 沈明霞 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第10期3251-3255,共5页
旨在探索感染不同等级赤霉病的小麦中主要成分含量变化引起的傅里叶中红外光谱信息响应,并结合模式识别方法实现基于傅里叶变换中红外光谱的小麦赤霉病等级无损检测。以感染不同等级赤霉病小麦为研究对象,在4000~400cm^-1波数范围内采... 旨在探索感染不同等级赤霉病的小麦中主要成分含量变化引起的傅里叶中红外光谱信息响应,并结合模式识别方法实现基于傅里叶变换中红外光谱的小麦赤霉病等级无损检测。以感染不同等级赤霉病小麦为研究对象,在4000~400cm^-1波数范围内采集95个小麦样本的傅里叶中红外光谱数据,利用载荷系数法(XLW)与随机森林算法(RF)分析选取小麦样本傅里叶中红外光谱中的敏感波长,利用稀疏表示分类(SRC)算法建模识别小麦感染赤霉病等级。结果表明:XLW算法和RF算法选择的特征波长作为定性分析模型的输入时模型鉴别准确率与全波段光谱数据作输入时均达90%以上,特征波长提取算法可以有效简化模型并提高效率。RF-SRC模型鉴别效果最好,建模集鉴别准确率达97%,测试集鉴别准确率达96%。小麦感染赤霉病等级的不同会引起小麦中水分、淀粉、纤维素、可溶性氮素、蛋白质、脂肪等物质含量的变化,采用RF算法选择的特征波长均反映了这些物质所对应的傅里叶中红外光谱透射光谱特征的差异,结合SRC模型进行小麦赤霉病等级鉴别可达到最好的鉴别效果。因此,利用傅里叶中红外光谱技术结合模式识别方法对小麦赤霉病等级鉴别是可行的,解释了傅里叶中红外光谱技术检测小麦赤霉病等级的机理。 展开更多
关键词 傅里叶中红外光谱 小麦 赤霉病 稀疏表示分类
在线阅读 下载PDF
基于稀疏近邻表示的分类方法 被引量:4
9
作者 王琦 惠康华 《计算机工程与设计》 CSCD 北大核心 2013年第4期1425-1431,共7页
稀疏表示分类方法 (SRC)在人脸识别方面取得了当前最好的分类结果,针对SRC存在的问题,提出稀疏近邻表示方法 (SNRC)。在局部线性嵌入方法前提假设成立的条件下,SNRC通过稀疏近邻表示实现目标分类。在几个不同数据集上的实验结果显示,SNR... 稀疏表示分类方法 (SRC)在人脸识别方面取得了当前最好的分类结果,针对SRC存在的问题,提出稀疏近邻表示方法 (SNRC)。在局部线性嵌入方法前提假设成立的条件下,SNRC通过稀疏近邻表示实现目标分类。在几个不同数据集上的实验结果显示,SNRC适用于呈非线性分布的数据集,并取得了较好的效果。进一步的分析表明,SNRC能够较好的适用于那些通过降维方法得到的低维数据的分类问题,尤其适用于基于近邻保持的一类降维方法得到的低维数据,并且具有较低的时间复杂度。 展开更多
关键词 稀疏表示 局部线性嵌入 稀疏近邻表示 K近邻分类 降维
在线阅读 下载PDF
基于二维图像矩阵的稀疏表示分类方法 被引量:3
10
作者 程广涛 宋占杰 陈雪 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2014年第6期541-545,共5页
利用稀疏表示对图像分类时,需要将二维图像转换为一维特征向量,这大大增加了计算复杂度和忽略了图像矩阵中固有的局部结构信息.为了解决上述问题,设计了完全基于二维特征矩阵的稀疏表示人脸分类方法.首先将二维图像转为2D Fisherface矩... 利用稀疏表示对图像分类时,需要将二维图像转换为一维特征向量,这大大增加了计算复杂度和忽略了图像矩阵中固有的局部结构信息.为了解决上述问题,设计了完全基于二维特征矩阵的稀疏表示人脸分类方法.首先将二维图像转为2D Fisherface矩阵,然后直接利用二维矩阵求解稀疏表示和进行分类.整个识别过程中,不需要将二维图像转换为一维向量.实验结果表明,二维特征矩阵在稀疏表示分类中是十分有效的,设计的方法可以更快的运算速度达到更高的识别率.在ORL人脸数据库和Extended Yale B人脸数据库上的识别率分别达到97.5%和99.3%. 展开更多
关键词 人脸识别 稀疏表示 目标分类 二维特征矩阵
在线阅读 下载PDF
模糊神经网络像素分类的稀疏表示医学CT图像去噪方法 被引量:3
11
作者 孙云山 张立毅 耿艳香 《信号处理》 CSCD 北大核心 2015年第10期1354-1360,共7页
在医学CT成像过程中,由于引入了不可避免的噪声,致使图像质量下降,影响临床诊断。因此,研究医学CT图像降噪方法在诊疗服务中具有重要意义。本文结合图像分割的思想,利用模糊神经网络将图像像素分成边缘区、平滑区与纹理区等不同图像区域... 在医学CT成像过程中,由于引入了不可避免的噪声,致使图像质量下降,影响临床诊断。因此,研究医学CT图像降噪方法在诊疗服务中具有重要意义。本文结合图像分割的思想,利用模糊神经网络将图像像素分成边缘区、平滑区与纹理区等不同图像区域,通过小波稀疏表示对不同类型的图像块进行阈值去噪处理,以便更好地保留医学CT图像的细节特征。实验结果表明,本文算法对医学CT图像降噪有一定的效果,峰值信噪比(PSNR)和结构相似性指数(SSIM)都得到了改善,更好并且很好地保留CT图像的细节信息。 展开更多
关键词 计算机断层图像去噪 模糊神经网络 像素分类 小波稀疏表示
在线阅读 下载PDF
基于改进稀疏表示的海上风电场交流海底电缆短路故障分类方法 被引量:14
12
作者 唐文虎 梁启恒 +2 位作者 赵柏宁 辛妍丽 古一灿 《中国电机工程学报》 EI CSCD 北大核心 2023年第6期2212-2221,共10页
准确、快速的海底电缆故障分类是海上风电场运维的重要一环。该文提出一种基于改进稀疏表示的海上风电场交流海底电缆短路故障分类方法,该方法综合利用故障发生后半周波电流信号的时域特征作为故障分类依据,采用K次奇异值分解(K singula... 准确、快速的海底电缆故障分类是海上风电场运维的重要一环。该文提出一种基于改进稀疏表示的海上风电场交流海底电缆短路故障分类方法,该方法综合利用故障发生后半周波电流信号的时域特征作为故障分类依据,采用K次奇异值分解(K singular value decomposition,K-SVD)字典学习算法对各类故障信号的特征信息进行学习,构造出准确匹配各类故障本质特征的过完备字典。在学习字典的基础上,提出一种基于混合交替方向乘子法(mixed alternating direction method of multipliers,M-ADMM)的改进稀疏分解算法将故障信号分解为过完备字典与稀疏向量的乘积,结合基于稀疏表示的分类方法实现对故障重构信号的分类。仿真研究结果表明,该改进稀疏分解算法具有精确的信号重构、降噪效果。所提出的故障分类方法无需人工构造故障信号特征,避免了多工况故障信号特征筛选、时频域变换等繁琐流程。与SVM、CNN、LSTM等智能分类算法的对比结果表明,该方法具有较强自适应性的同时不易受故障时刻、故障位置影响且噪声鲁棒性强,可以准确识别海底电缆场景下低阻短路故障类型。 展开更多
关键词 稀疏表示 字典学习 海上风电场 海底电缆 故障分类
在线阅读 下载PDF
基于傅里叶描述子和加权稀疏表示的军事图像分类方法 被引量:1
13
作者 谢泽奇 张会敏 张善文 《计算机应用与软件》 北大核心 2019年第3期68-71,75,共5页
军事图像分类是一个重要的研究方向。在傅里叶描述子和加权稀疏表示的基础上,提出一种军事图像分类方法。利用Canny算法提取军事图像的轮廓特征,计算轮廓点的中心距离序列;再将该序列转换为极坐标转换,进行傅里叶变换,得到军事图像的改... 军事图像分类是一个重要的研究方向。在傅里叶描述子和加权稀疏表示的基础上,提出一种军事图像分类方法。利用Canny算法提取军事图像的轮廓特征,计算轮廓点的中心距离序列;再将该序列转换为极坐标转换,进行傅里叶变换,得到军事图像的改进傅里叶描述子;利用加权稀疏表示分类方法对图像进行分类。该方法的优点在于提取的傅里叶描述子具有很好的平移、旋转、尺度缩放和轮廓起始点的不变性。加权稀疏表示能够克服遮挡、弱特征、视角和姿态变化等因素的影响,并且具有较强的形状区分能力。在ICL军事图像数据库上进行分类实验,分类率高达92%以上。结果表明,该方法是有效可行的,能够为军事图像自动分类识别系统提供技术参考。 展开更多
关键词 军事图像分类 中心-边界距离序列 改进傅里叶描述子 加权稀疏表示分类
在线阅读 下载PDF
基于增强字典稀疏表示分类的SAR目标识别方法 被引量:3
14
作者 陈婕 廖志平 《探测与控制学报》 CSCD 北大核心 2020年第3期75-81,共7页
针对合成孔径雷达(SAR)目标识别方法中分类决策存在的不足,提出基于增强字典稀疏表示分类的SAR目标识别方法。该方法通过对原始训练样本进行多信噪比、多分辨率样本构造,进而构建描述能力更强、对于扩展操作条件更稳健的增强字典进而采... 针对合成孔径雷达(SAR)目标识别方法中分类决策存在的不足,提出基于增强字典稀疏表示分类的SAR目标识别方法。该方法通过对原始训练样本进行多信噪比、多分辨率样本构造,进而构建描述能力更强、对于扩展操作条件更稳健的增强字典进而采用稀疏表示分类器提高目标识别的整体性能。基于MSTAR数据集的实验结果表明,该方法在对于3类和10类目标的平均识别率可分别达到98.61%和98.12%,验证其区分多类目标的能力;通过测试在不同信噪比、不同分辨率下的识别性能,验证了该方法对于噪声干扰、分辨率变化具有较强的稳健性。 展开更多
关键词 合成孔径雷达 目标识别 增强字典 稀疏表示分类
在线阅读 下载PDF
基于正则化边界Fisher分析和稀疏表示分类的人脸识别方法 被引量:2
15
作者 黄可坤 《计算机应用》 CSCD 北大核心 2013年第6期1723-1726,共4页
边界Fisher分析(MFA)应用于人脸识别时会遇到小样本问题,如果用主成分分析进行降维来处理该问题,则会丢失一些对分类有益的分量;如果把MFA的目标函数用最大间距准则代替,则较难得到最佳参数。提出了一种正则化的MFA方法,该方法用一个较... 边界Fisher分析(MFA)应用于人脸识别时会遇到小样本问题,如果用主成分分析进行降维来处理该问题,则会丢失一些对分类有益的分量;如果把MFA的目标函数用最大间距准则代替,则较难得到最佳参数。提出了一种正则化的MFA方法,该方法用一个较小的数乘上单位阵构造正则项,然后加到MFA的类内散度矩阵中,使得所得矩阵是可逆的,并且不会丢失对分类有益的分量,也容易确定其中的参数。因为一个样本通常能被少数几个距离比较近的同类样本很好地线性表达,在正则化MFA降维之后结合使用稀疏表示分类算法进一步提高识别率。在FERET和AR数据库上的实验表明,对比一些经典的降维方法,使用该方法能显著提高识别率。 展开更多
关键词 人脸识别 降维 FISHER线性判别分析 边界Fisher分析 稀疏表示分类
在线阅读 下载PDF
联合核稀疏表示和增强字典的SAR目标识别方法 被引量:1
16
作者 李振汕 丁柏圆 《电光与控制》 CSCD 北大核心 2024年第8期44-49,共6页
为提高合成孔径雷达(SAR)图像目标识别性能,以传统稀疏表示分类(SRC)为基础,提出联合核稀疏表示分类(KSRC)和增强字典的方法。KSRC在SRC的基础上引入非线性核函数,从而提升分类器对于非线性数据关系的表征能力。增强字典在原始训练样本... 为提高合成孔径雷达(SAR)图像目标识别性能,以传统稀疏表示分类(SRC)为基础,提出联合核稀疏表示分类(KSRC)和增强字典的方法。KSRC在SRC的基础上引入非线性核函数,从而提升分类器对于非线性数据关系的表征能力。增强字典在原始训练样本的基础上,通过噪声添加和部分遮挡扩展原始字典,提升其对典型扩展操作条件的适应能力。同时,增强字典在KSRC的作用下,可以进一步提升对其他相关扩展操作条件的覆盖程度,从而提升识别方法对于多类扩展操作条件的有效性。以MSTAR数据集为基础开展实验,设置了标准操作条件以及噪声干扰、部分遮挡、型号差异等扩展操作条件,实验结果显示了本文方法的优势性能。 展开更多
关键词 合成孔径雷达 目标识别 稀疏表示分类 增强字典 扩展操作条件
在线阅读 下载PDF
基于声音特征与改进稀疏表示分类的断路器机械故障诊断方法 被引量:19
17
作者 孙玉伟 罗林根 +3 位作者 陈敬德 王辉 盛戈皞 江秀臣 《电网技术》 EI CSCD 北大核心 2022年第3期1214-1222,共9页
机械缺陷是导致断路器故障运行的主要原因之一,为了实现对断路器机械故障的诊断,该文根据人耳听觉特性提取断路器合闸声音信号的联合倒谱系数作为声音特征向量,运用线性判别分析和核主成分分析对特征向量进行优化与降维,进而采用稀疏表... 机械缺陷是导致断路器故障运行的主要原因之一,为了实现对断路器机械故障的诊断,该文根据人耳听觉特性提取断路器合闸声音信号的联合倒谱系数作为声音特征向量,运用线性判别分析和核主成分分析对特征向量进行优化与降维,进而采用稀疏表示分类算法对特征向量进行识别,将线性判别分析中的散度概念引入到稀疏表示分类目标函数以改善分类器性能。实验结果表明,该文所提方法能够准确识别断路器机械故障与变电站常见声音类别。将改进稀疏表示分类算法同稀疏表示分类、支持向量机与K近邻算法进行比较,结果表明该方法识别准确率较高,识别效果较好;最后在含噪情况下对该文所提方法的应用效果开展实验,并对联合倒谱系数和单一倒谱系数的识别效果进行比较。 展开更多
关键词 断路器 故障诊断 声音特征 联合倒谱系数 改进稀疏表示分类 模式识别
在线阅读 下载PDF
基于L_(2,p)矩阵范数稀疏表示的图像分类方法 被引量:6
18
作者 时中荣 王胜 刘传才 《南京理工大学学报》 EI CAS CSCD 北大核心 2017年第1期80-89,共10页
为了提高基于稀疏表示分类算法的分类精度,该文充分利用同类样本的非零系数高度集中的特点,提出一种用l2,p矩阵范数进行稀疏约束的基于稀疏表示的分类方法。该算法的训练阶段,构造的目标函数主要包括三个部分:重构误差、稀疏矩阵类内一... 为了提高基于稀疏表示分类算法的分类精度,该文充分利用同类样本的非零系数高度集中的特点,提出一种用l2,p矩阵范数进行稀疏约束的基于稀疏表示的分类方法。该算法的训练阶段,构造的目标函数主要包括三个部分:重构误差、稀疏矩阵类内一致性约束、稀疏矩阵类间不一致性约束,其中的稀疏矩阵类内一致性约束用l2,p矩阵范数实现。该算法的测试阶段,计算新样本的稀疏重构系数以用于分类。和传统的基于稀疏表示的分类方法比较,该方法求稀疏重构系数时对样本不再单个处理,而是对同类样本整体处理,且充分利用同类样本的相似性和不同类样本的相异性,提高了基于稀疏表示的图像分类方法的分类精度。实验结果表明:该方法进一步提高了图像分类的准确率,在AR、Extended Yale B和Fifteen Scene Category数据库上和基于稀疏表示的分类方法(Sparse representation based classification,SRC)相比较,识别率分别提高了20.11%、20.88%和2.13%。 展开更多
关键词 图像分类 稀疏表示 稀疏分类 矩阵范数 稀疏编码 字典学习 稀疏正则项 稀疏诱导范数
在线阅读 下载PDF
基于半监督子空间迁移的稀疏表示遥感图像场景分类方法 被引量:5
19
作者 周国华 蒋晖 +1 位作者 顾晓清 殷新春 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2021年第6期684-693,共10页
利用已有的标记数据对新领域图像进行分类是遥感图像场景分类的重要研究方向。提出了一种基于半监督子空间迁移的稀疏表示(sparse representation method based on semi-supervised transfer learning subspace,SR-SSTLS)遥感图像场景... 利用已有的标记数据对新领域图像进行分类是遥感图像场景分类的重要研究方向。提出了一种基于半监督子空间迁移的稀疏表示(sparse representation method based on semi-supervised transfer learning subspace,SR-SSTLS)遥感图像场景分类方法。为减少源域和目标域数据分布变化,将不同数据域的遥感图像投影至共享子空间。源域和目标域数据在投影子空间协同学习共享字典,使得带标记的源域数据辅助目标域模型的建立。同时,建立了基于源域、目标域、源域-目标域标记数据的拉普拉斯图矩阵和目标域未标记数据的拉普拉斯正则化项,使得目标域中的数据均得到很好编码。在多个遥感图像数据集上的实验结果均证明了SR-SSTLS方法的有效性。 展开更多
关键词 遥感图像场景分类 稀疏表示 半监督 子空间 迁移学习
在线阅读 下载PDF
基于谱回归的核稀疏表示分类方法 被引量:2
20
作者 黄不了 刘明明 +1 位作者 孙伟 刘兵 《计算机应用》 CSCD 北大核心 2017年第A01期97-102,共6页
针对传统核稀疏表示分类方法在高维数据集上分类精度较低且计算复杂度较高的问题,提出基于谱回归的核稀疏表示分类方法。该方法先采用谱回归分析得到用于特征提取的转换矩阵,并通过转换矩阵对样本数据进行特征提取,再通过核方法将其投... 针对传统核稀疏表示分类方法在高维数据集上分类精度较低且计算复杂度较高的问题,提出基于谱回归的核稀疏表示分类方法。该方法先采用谱回归分析得到用于特征提取的转换矩阵,并通过转换矩阵对样本数据进行特征提取,再通过核方法将其投影到高维特征空间使其更加具有可分性,并最终在高维特征空间中使用稀疏表示方法对人脸图像加以识别。通过将谱回归方法与核稀疏表示分类方法结合,有效利用了数据集的流形结构和类别信息,较好地解决了高维人脸图像核稀疏表示分类问题。在标准人脸图像数据集上的实验结果表明,该方法不仅提高了识别率,而且减少了算法时间,可以有效应用于高维人脸图像数据的分类问题。 展开更多
关键词 稀疏表示 方法 谱回归 流形学习 人脸识别
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部