准确、快速的海底电缆故障分类是海上风电场运维的重要一环。该文提出一种基于改进稀疏表示的海上风电场交流海底电缆短路故障分类方法,该方法综合利用故障发生后半周波电流信号的时域特征作为故障分类依据,采用K次奇异值分解(K singula...准确、快速的海底电缆故障分类是海上风电场运维的重要一环。该文提出一种基于改进稀疏表示的海上风电场交流海底电缆短路故障分类方法,该方法综合利用故障发生后半周波电流信号的时域特征作为故障分类依据,采用K次奇异值分解(K singular value decomposition,K-SVD)字典学习算法对各类故障信号的特征信息进行学习,构造出准确匹配各类故障本质特征的过完备字典。在学习字典的基础上,提出一种基于混合交替方向乘子法(mixed alternating direction method of multipliers,M-ADMM)的改进稀疏分解算法将故障信号分解为过完备字典与稀疏向量的乘积,结合基于稀疏表示的分类方法实现对故障重构信号的分类。仿真研究结果表明,该改进稀疏分解算法具有精确的信号重构、降噪效果。所提出的故障分类方法无需人工构造故障信号特征,避免了多工况故障信号特征筛选、时频域变换等繁琐流程。与SVM、CNN、LSTM等智能分类算法的对比结果表明,该方法具有较强自适应性的同时不易受故障时刻、故障位置影响且噪声鲁棒性强,可以准确识别海底电缆场景下低阻短路故障类型。展开更多
为了提高基于稀疏表示分类算法的分类精度,该文充分利用同类样本的非零系数高度集中的特点,提出一种用l2,p矩阵范数进行稀疏约束的基于稀疏表示的分类方法。该算法的训练阶段,构造的目标函数主要包括三个部分:重构误差、稀疏矩阵类内一...为了提高基于稀疏表示分类算法的分类精度,该文充分利用同类样本的非零系数高度集中的特点,提出一种用l2,p矩阵范数进行稀疏约束的基于稀疏表示的分类方法。该算法的训练阶段,构造的目标函数主要包括三个部分:重构误差、稀疏矩阵类内一致性约束、稀疏矩阵类间不一致性约束,其中的稀疏矩阵类内一致性约束用l2,p矩阵范数实现。该算法的测试阶段,计算新样本的稀疏重构系数以用于分类。和传统的基于稀疏表示的分类方法比较,该方法求稀疏重构系数时对样本不再单个处理,而是对同类样本整体处理,且充分利用同类样本的相似性和不同类样本的相异性,提高了基于稀疏表示的图像分类方法的分类精度。实验结果表明:该方法进一步提高了图像分类的准确率,在AR、Extended Yale B和Fifteen Scene Category数据库上和基于稀疏表示的分类方法(Sparse representation based classification,SRC)相比较,识别率分别提高了20.11%、20.88%和2.13%。展开更多
利用已有的标记数据对新领域图像进行分类是遥感图像场景分类的重要研究方向。提出了一种基于半监督子空间迁移的稀疏表示(sparse representation method based on semi-supervised transfer learning subspace,SR-SSTLS)遥感图像场景...利用已有的标记数据对新领域图像进行分类是遥感图像场景分类的重要研究方向。提出了一种基于半监督子空间迁移的稀疏表示(sparse representation method based on semi-supervised transfer learning subspace,SR-SSTLS)遥感图像场景分类方法。为减少源域和目标域数据分布变化,将不同数据域的遥感图像投影至共享子空间。源域和目标域数据在投影子空间协同学习共享字典,使得带标记的源域数据辅助目标域模型的建立。同时,建立了基于源域、目标域、源域-目标域标记数据的拉普拉斯图矩阵和目标域未标记数据的拉普拉斯正则化项,使得目标域中的数据均得到很好编码。在多个遥感图像数据集上的实验结果均证明了SR-SSTLS方法的有效性。展开更多
文摘准确、快速的海底电缆故障分类是海上风电场运维的重要一环。该文提出一种基于改进稀疏表示的海上风电场交流海底电缆短路故障分类方法,该方法综合利用故障发生后半周波电流信号的时域特征作为故障分类依据,采用K次奇异值分解(K singular value decomposition,K-SVD)字典学习算法对各类故障信号的特征信息进行学习,构造出准确匹配各类故障本质特征的过完备字典。在学习字典的基础上,提出一种基于混合交替方向乘子法(mixed alternating direction method of multipliers,M-ADMM)的改进稀疏分解算法将故障信号分解为过完备字典与稀疏向量的乘积,结合基于稀疏表示的分类方法实现对故障重构信号的分类。仿真研究结果表明,该改进稀疏分解算法具有精确的信号重构、降噪效果。所提出的故障分类方法无需人工构造故障信号特征,避免了多工况故障信号特征筛选、时频域变换等繁琐流程。与SVM、CNN、LSTM等智能分类算法的对比结果表明,该方法具有较强自适应性的同时不易受故障时刻、故障位置影响且噪声鲁棒性强,可以准确识别海底电缆场景下低阻短路故障类型。
文摘为了提高基于稀疏表示分类算法的分类精度,该文充分利用同类样本的非零系数高度集中的特点,提出一种用l2,p矩阵范数进行稀疏约束的基于稀疏表示的分类方法。该算法的训练阶段,构造的目标函数主要包括三个部分:重构误差、稀疏矩阵类内一致性约束、稀疏矩阵类间不一致性约束,其中的稀疏矩阵类内一致性约束用l2,p矩阵范数实现。该算法的测试阶段,计算新样本的稀疏重构系数以用于分类。和传统的基于稀疏表示的分类方法比较,该方法求稀疏重构系数时对样本不再单个处理,而是对同类样本整体处理,且充分利用同类样本的相似性和不同类样本的相异性,提高了基于稀疏表示的图像分类方法的分类精度。实验结果表明:该方法进一步提高了图像分类的准确率,在AR、Extended Yale B和Fifteen Scene Category数据库上和基于稀疏表示的分类方法(Sparse representation based classification,SRC)相比较,识别率分别提高了20.11%、20.88%和2.13%。
文摘利用已有的标记数据对新领域图像进行分类是遥感图像场景分类的重要研究方向。提出了一种基于半监督子空间迁移的稀疏表示(sparse representation method based on semi-supervised transfer learning subspace,SR-SSTLS)遥感图像场景分类方法。为减少源域和目标域数据分布变化,将不同数据域的遥感图像投影至共享子空间。源域和目标域数据在投影子空间协同学习共享字典,使得带标记的源域数据辅助目标域模型的建立。同时,建立了基于源域、目标域、源域-目标域标记数据的拉普拉斯图矩阵和目标域未标记数据的拉普拉斯正则化项,使得目标域中的数据均得到很好编码。在多个遥感图像数据集上的实验结果均证明了SR-SSTLS方法的有效性。