期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于AP-Entropy选择集成的风控模型和算法
被引量:
2
1
作者
王茂光
杨行
《计算机科学》
CSCD
北大核心
2021年第S02期71-76,80,共7页
近年来互联网金融网贷领域涌现出了众多的风控问题,对此采用多种特征选择方法预处理风控领域的数据指标,构建了全面的针对企业信用的风控指标体系,采用stacking集成策略研究了基于AP-Entropy的信用风险模型。信用风险模型有两层学习器,...
近年来互联网金融网贷领域涌现出了众多的风控问题,对此采用多种特征选择方法预处理风控领域的数据指标,构建了全面的针对企业信用的风控指标体系,采用stacking集成策略研究了基于AP-Entropy的信用风险模型。信用风险模型有两层学习器,引入选择集成思想,从种类和数量上筛选基学习器。首先,在Logistic回归、反向传播神经网络、AdaBoost等经典机器学习算法中,采用AP聚类算法选出适合企业信用风险的异质学习器作为基学习器;其次,在每次学习器迭代中,利用熵对学习器择优,自动选出F1值最高的基学习器,其中改进基于熵的学习器选择算法,提升了基学习器选择过程的效率,降低了模型的计算成本,模型选取XGBoost作为次级基学习器。实验结果表明,文中提出的模型和其他模型相比具有更好的学习效果和更强的泛化能力。
展开更多
关键词
风控指标体系
stacking集成策略
AP-Entropy信用风险模型
选择
集成
AP聚类
算法
基于熵的学习器选择算法
XGBoost
在线阅读
下载PDF
职称材料
一种基于置信度的代表点选择算法
被引量:
1
2
作者
黄云
洪佳明
覃遵跃
《计算机工程》
CAS
CSCD
2012年第19期167-169,174,共4页
代表点选择是实现缩减数据集规模的有效途径,可以提高分类的准确率和执行效率。为此,通过引入分类置信度熵的概念,提出适应度评价函数,用于评估代表点的选择效果,以此找到最优的代表点集。该方法可与其他代表点选择方法结合,得到性能更...
代表点选择是实现缩减数据集规模的有效途径,可以提高分类的准确率和执行效率。为此,通过引入分类置信度熵的概念,提出适应度评价函数,用于评估代表点的选择效果,以此找到最优的代表点集。该方法可与其他代表点选择方法结合,得到性能更优的代表点选择方法。与多个经典代表点选择方法进行实验比较,结果表明基于置信度的代表点选择方法在分类准确率和数据降低率上有一定优势。
展开更多
关键词
置信度
熵
适应度评价函数
代表点
选择
k最近邻
半监督
学习
遗传
算法
在线阅读
下载PDF
职称材料
基于IMIE、MCFS和SSA-ELM的离心泵故障诊断方法
被引量:
4
3
作者
辜文娟
张扬
《机电工程》
CAS
北大核心
2023年第9期1456-1463,共8页
采用多尺度排列熵对离心泵振动信号进行分析时,存在忽略信号幅值信息以及粗粒化处理存在不足的问题,从而导致离心泵的故障识别准确率不高,为此,提出了一种基于改进多尺度增长熵(IMIE)、多聚类特征选择(MCFS)和麻雀搜索算法优化极限学习...
采用多尺度排列熵对离心泵振动信号进行分析时,存在忽略信号幅值信息以及粗粒化处理存在不足的问题,从而导致离心泵的故障识别准确率不高,为此,提出了一种基于改进多尺度增长熵(IMIE)、多聚类特征选择(MCFS)和麻雀搜索算法优化极限学习机(SSA-ELM)的离心泵故障诊断方法。首先,基于改进粗粒化处理,提出了改进多尺度增长熵(IMIE)方法,将其用于提取故障特征,构造了反映离心泵损伤属性的特征矩阵;随后,采用多聚类特征选择(MCFS),对原始故障特征进行了重要性排序,获得了对分类识别贡献度更高的故障特征,提高了故障特征的质量;最后,将低维的敏感特征输入至基于麻雀搜索算法(SSA)的极限学习机(ELM)中,进行了离心泵故障分类,完成了离心泵不同故障类型的识别任务;并采用离心泵故障数据集,对基于IMIE、MCFS和SSA-ELM的故障诊断方法的有效性进行了实验验证。研究结果表明:所提故障诊断方法的故障识别准确率达到了100%,多次实验的平均准确率和标准差也优于其他对比的故障诊断方法,即IMIE能够准确地提取信号中的故障信息,进而表征离心泵的健康状态;SSA-ELM能够准确地识别离心泵的故障类型,证明该方法具有一定的有效性和优越性。
展开更多
关键词
叶片式泵
改进粗粒化处理
改进多尺度增长
熵
多聚类特征
选择
麻雀搜索
算法
极限
学习
机
特征矩阵
在线阅读
下载PDF
职称材料
题名
一种基于AP-Entropy选择集成的风控模型和算法
被引量:
2
1
作者
王茂光
杨行
机构
中央财经大学信息学院
出处
《计算机科学》
CSCD
北大核心
2021年第S02期71-76,80,共7页
文摘
近年来互联网金融网贷领域涌现出了众多的风控问题,对此采用多种特征选择方法预处理风控领域的数据指标,构建了全面的针对企业信用的风控指标体系,采用stacking集成策略研究了基于AP-Entropy的信用风险模型。信用风险模型有两层学习器,引入选择集成思想,从种类和数量上筛选基学习器。首先,在Logistic回归、反向传播神经网络、AdaBoost等经典机器学习算法中,采用AP聚类算法选出适合企业信用风险的异质学习器作为基学习器;其次,在每次学习器迭代中,利用熵对学习器择优,自动选出F1值最高的基学习器,其中改进基于熵的学习器选择算法,提升了基学习器选择过程的效率,降低了模型的计算成本,模型选取XGBoost作为次级基学习器。实验结果表明,文中提出的模型和其他模型相比具有更好的学习效果和更强的泛化能力。
关键词
风控指标体系
stacking集成策略
AP-Entropy信用风险模型
选择
集成
AP聚类
算法
基于熵的学习器选择算法
XGBoost
Keywords
Risk control feature system
Stacking ensemble strategies
AP-Entropy credit risk model
Selective ensemble
Affinity propagation clustering algorithm
Learner selection algorithm based on Entropy
XGBoost
分类号
TP311 [自动化与计算机技术—计算机软件与理论]
在线阅读
下载PDF
职称材料
题名
一种基于置信度的代表点选择算法
被引量:
1
2
作者
黄云
洪佳明
覃遵跃
机构
吉首大学软件学院
中山大学信息科学与技术学院
出处
《计算机工程》
CAS
CSCD
2012年第19期167-169,174,共4页
文摘
代表点选择是实现缩减数据集规模的有效途径,可以提高分类的准确率和执行效率。为此,通过引入分类置信度熵的概念,提出适应度评价函数,用于评估代表点的选择效果,以此找到最优的代表点集。该方法可与其他代表点选择方法结合,得到性能更优的代表点选择方法。与多个经典代表点选择方法进行实验比较,结果表明基于置信度的代表点选择方法在分类准确率和数据降低率上有一定优势。
关键词
置信度
熵
适应度评价函数
代表点
选择
k最近邻
半监督
学习
遗传
算法
Keywords
confidence entropy
fitness evaluation function
representative point selection
k-nearest neighbor
semi-supervised learning
genetic algorithm
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
基于IMIE、MCFS和SSA-ELM的离心泵故障诊断方法
被引量:
4
3
作者
辜文娟
张扬
机构
江西省商务学校
湖北工业大学机械工程学院
出处
《机电工程》
CAS
北大核心
2023年第9期1456-1463,共8页
基金
江西省教育厅科技课题(GJJ151486)。
文摘
采用多尺度排列熵对离心泵振动信号进行分析时,存在忽略信号幅值信息以及粗粒化处理存在不足的问题,从而导致离心泵的故障识别准确率不高,为此,提出了一种基于改进多尺度增长熵(IMIE)、多聚类特征选择(MCFS)和麻雀搜索算法优化极限学习机(SSA-ELM)的离心泵故障诊断方法。首先,基于改进粗粒化处理,提出了改进多尺度增长熵(IMIE)方法,将其用于提取故障特征,构造了反映离心泵损伤属性的特征矩阵;随后,采用多聚类特征选择(MCFS),对原始故障特征进行了重要性排序,获得了对分类识别贡献度更高的故障特征,提高了故障特征的质量;最后,将低维的敏感特征输入至基于麻雀搜索算法(SSA)的极限学习机(ELM)中,进行了离心泵故障分类,完成了离心泵不同故障类型的识别任务;并采用离心泵故障数据集,对基于IMIE、MCFS和SSA-ELM的故障诊断方法的有效性进行了实验验证。研究结果表明:所提故障诊断方法的故障识别准确率达到了100%,多次实验的平均准确率和标准差也优于其他对比的故障诊断方法,即IMIE能够准确地提取信号中的故障信息,进而表征离心泵的健康状态;SSA-ELM能够准确地识别离心泵的故障类型,证明该方法具有一定的有效性和优越性。
关键词
叶片式泵
改进粗粒化处理
改进多尺度增长
熵
多聚类特征
选择
麻雀搜索
算法
极限
学习
机
特征矩阵
Keywords
vane pump
improved coarse-grained processing
improved multiscale increment entropy(IMIE)
multi cluster feature selection(MCFS)
sparrow search algorithm(SSA)
extreme learning machine(ELM)
characteristic matrix
分类号
TH311 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于AP-Entropy选择集成的风控模型和算法
王茂光
杨行
《计算机科学》
CSCD
北大核心
2021
2
在线阅读
下载PDF
职称材料
2
一种基于置信度的代表点选择算法
黄云
洪佳明
覃遵跃
《计算机工程》
CAS
CSCD
2012
1
在线阅读
下载PDF
职称材料
3
基于IMIE、MCFS和SSA-ELM的离心泵故障诊断方法
辜文娟
张扬
《机电工程》
CAS
北大核心
2023
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部