期刊文献+
共找到641篇文章
< 1 2 33 >
每页显示 20 50 100
基于多尺度特征融合和时空注意力LSTM的台风云图预测研究
1
作者 程勇 钱坤 +5 位作者 王军 渠海峰 李伟 杨玲 韩晓东 刘敏 《海洋预报》 北大核心 2025年第2期89-98,共10页
现有深度学习方法在预测台风时没有考虑其特征内化损失问题,难以全面捕捉台风结构变化。为此,本文提出一种基于多尺度特征融合的时空注意力长短期记忆网络(MSTA-LSTM)方法。引入特征增强模块加强台风特征信息,通过跳跃连接缓解编解码过... 现有深度学习方法在预测台风时没有考虑其特征内化损失问题,难以全面捕捉台风结构变化。为此,本文提出一种基于多尺度特征融合的时空注意力长短期记忆网络(MSTA-LSTM)方法。引入特征增强模块加强台风特征信息,通过跳跃连接缓解编解码过程中的台风细节特征损失,同时在时空长短期记忆网络(ST-LSTM)单元中利用卷积块注意力模块优化信息传递,最后通过反卷积调整不同尺度的解码输出,融合后输出结果。使用“葵花8号”卫星获取的东亚—东南亚太平洋沿岸地区的台风云图数据集开展验证和消融实验,该数据集包含16个台风过程的训练集和3个台风过程的测试集。与其他网络相比,MSTA-LSTM网络的均方根误差、峰值信噪比和结构相似性指数指标分别为42.76、16.38和0.4817,有效提高了台风云图预测的准确性。 展开更多
关键词 时间序列预测 尺度特征 时空长短期记忆网络 注意力机制
在线阅读 下载PDF
一种基于多尺度特征和有效注意力的病理图像分割方法
2
作者 王建宇 王朝立 +1 位作者 孙占全 刘晓虹 《小型微型计算机系统》 北大核心 2025年第6期1416-1426,共11页
病理图像分割作为病理学图像分析的一项重要任务,为医生对患者的病情进行诊断以及后续治疗方案的制定起到了至关重要的作用.然而,病理图像因其复杂的结构,例如血管、空洞、图像中病变区域与正常区域间边界模糊及对比差异小等问题,使得... 病理图像分割作为病理学图像分析的一项重要任务,为医生对患者的病情进行诊断以及后续治疗方案的制定起到了至关重要的作用.然而,病理图像因其复杂的结构,例如血管、空洞、图像中病变区域与正常区域间边界模糊及对比差异小等问题,使得现有模型分割效果不理想.因此,本文提出了一种基于多尺度特征和有效注意力的病理图像分割模型,其挑战性困难在于如何有效地利用空间和通道的相关性从病理图像中精确分割边界平滑的癌变组织.首先,该模型用金字塔视觉Transformer架构对输入图像提取包含丰富语义信息的多尺度特征,再用级联融合解码器对高层特征进行聚合,得到全局映射图指导后续解码过程.其次,在解码器部分,提出局部增强的反向注意力模块和联合注意力模块对级联解码器中的特征进行有效处理.最后,使用深度监督的方式对模型进行有效训练,并将提出的方法在3个病理图像数据集上与多个先进的分割模型进行对比实验.大量的定性以及定量结果显示,本文提出的方法比其他模型表现出更好的性能,可以对病理图像进行有效的分割. 展开更多
关键词 病理图像 语义分割 尺度特征 注意力机制 TRANSFORMER
在线阅读 下载PDF
融合多尺度特征与注意力的小样本目标检测
3
作者 张英俊 甘望阳 +1 位作者 谢斌红 张睿 《小型微型计算机系统》 北大核心 2025年第3期689-696,共8页
针对现有小样本目标检测模型存在的尺度变化问题,支持集与查询集之间的外观变化、遮挡导致的误检与漏检问题,本文提出一种融合多尺度特征与注意力的小样本目标检测模型.首先,采用ResNet-101网络进行特征提取,同时引入ASPP(Atrous Spatia... 针对现有小样本目标检测模型存在的尺度变化问题,支持集与查询集之间的外观变化、遮挡导致的误检与漏检问题,本文提出一种融合多尺度特征与注意力的小样本目标检测模型.首先,采用ResNet-101网络进行特征提取,同时引入ASPP(Atrous Spatial Pyramid Pooling)模块获取不同的感受野,以捕获目标细节信息的多尺度特征.其次,采用Bi-FPN网络进行多尺度特征融合,获得更具代表性的查询特征与支持特征,有效缓解尺度变化问题.然后,利用提出的注意力引导特征增强模块对查询特征与支持特征进行自身关注,使得它们具有更好的判别能力,由此促进查询特征与支持特征的融合,以更好地应对外观变化和遮挡带来的挑战,从而缓解误检、漏检问题.最后,将分类头与边界框回归头进行解耦,分别对RPN网络基于细粒度查询特征产生的候选区域进行目标分类与目标定位.在PASCAL VOC与MS COCO数据集上的实验结果表明,所提模型的检测性能优于主流的小样本目标检测模型,相较于基线模型DCNet,mAP平均分别提升了3.5%与2.1%. 展开更多
关键词 小样本学习 元学习 目标检测 尺度特征融合 注意力机制
在线阅读 下载PDF
多尺度密集交互注意力残差真实图像去噪网络
4
作者 郭业才 胡晓伟 +1 位作者 AMITAVE Saha 毛湘南 《图学学报》 北大核心 2025年第2期279-287,共9页
针对图像去噪特征提取不全面以及特征利用率低,导致生成图像不够清晰的问题,提出一种多尺度密集交互注意力残差去噪网络(MDIARN)。首先,通过多尺度非对称特征提取模块(MAFM)初步提取浅层信息特征,以确保图像特征的多样性;然后,多尺度级... 针对图像去噪特征提取不全面以及特征利用率低,导致生成图像不够清晰的问题,提出一种多尺度密集交互注意力残差去噪网络(MDIARN)。首先,通过多尺度非对称特征提取模块(MAFM)初步提取浅层信息特征,以确保图像特征的多样性;然后,多尺度级联模块(MSCM)利用多维密集交互残差单元(MDIU)对图像特征进行多维映射,并逐步级联以增强模型之间的信息传递和交互性,充分拟合训练数据;引入双路全局注意力模块(DGAM)对多级特征进行全局联合学习,获取更具有判别性的特征信息;跳跃连接促进结构之间的参数共享,使不同维度的特征充分融合,保证信息的完整性;最后,采用残差学习构建出清晰的去噪图像。结果表明,该算法在真实噪声数据集(DND和SIDD)上峰值信噪比分别为39.80 dB和39.62 dB,结构相似性分别为95.4%和95.8%,均优于主流去噪算法。此外,该算法在低光度场景下应用也能保留更多细节,从而显著提升图像质量。 展开更多
关键词 图像去噪 尺度特征提取 多维密集交互 卷积神经网络 注意力
在线阅读 下载PDF
MDA-MIM:一种融合多尺度特征与双重注意力机制的雷达回波图预测模型
5
作者 胡强 高雅婷 +1 位作者 尹宾礼 渠连恩 《通信学报》 北大核心 2025年第3期248-257,共10页
为提升雷达回波图中时空特征的提取质量,提出了一种基于多尺度特征融合和双重注意力机制的MIM改进(MDA-MIM)模型。该模型基于空洞卷积实现多尺度特征提取与融合。通过在MIM模型中的非平稳模块集成自注意力机制,调整不同时间步长和空间... 为提升雷达回波图中时空特征的提取质量,提出了一种基于多尺度特征融合和双重注意力机制的MIM改进(MDA-MIM)模型。该模型基于空洞卷积实现多尺度特征提取与融合。通过在MIM模型中的非平稳模块集成自注意力机制,调整不同时间步长和空间位置的权重,更精确地捕捉雷达回波数据中的非平稳性特征。在平稳模块引入局部注意力机制,以聚焦于局部区域内的特征关联,增强对平稳性特征的捕捉能力。真实数据集上的实验结果表明,MDA-MIM具有优秀的预测性能,在MSE、MAE、SSIM和PSNR等指标上均优于对比模型。 展开更多
关键词 雷达回波图 时空预测 注意力机制 尺度特征
在线阅读 下载PDF
融合多尺度特征注意力的双目立体匹配算法
6
作者 张嫡 李泽平 +1 位作者 赵勇 杨文帮 《计算机工程与设计》 北大核心 2025年第1期30-36,共7页
针对现有的立体匹配算法在反光、反射、纹理模糊、纹理复杂边缘等区域推理精度不高的问题,提出一种融合多尺度特征注意力的立体匹配网络。采用改进的金字塔池化模块,将金字塔池化结合U型架构,加强边缘区域有效特征信息的提取;在网络中... 针对现有的立体匹配算法在反光、反射、纹理模糊、纹理复杂边缘等区域推理精度不高的问题,提出一种融合多尺度特征注意力的立体匹配网络。采用改进的金字塔池化模块,将金字塔池化结合U型架构,加强边缘区域有效特征信息的提取;在网络中引入多尺度特征融合的注意力模块,融合多尺度代价体和注意力机制增强代价体中不同层次信息量,同时捕获在不同维度间的信息依赖关系,抑制代价体中无关信息;采用多阶段的视差精化得到最终的视差图。实验结果表明,MFANet预测的精度相比基准网络GwcNet在SceneFlow、KITTI 2012和KITTI 2015分别提高了18.8%、11.6%、12%。 展开更多
关键词 深度学习 立体匹配 双目视觉 特征提取 尺度特征注意力 改进金字塔池化 视差优化
在线阅读 下载PDF
结合注意力机制和多尺度特征融合的三维手部姿态估计
7
作者 郭诗月 党建武 +1 位作者 王阳萍 雍玖 《计算机应用》 北大核心 2025年第4期1293-1299,共7页
针对因遮挡和自相似性导致的从单张RGB图像估计三维手部姿态不精确的问题,提出结合注意力机制和多尺度特征融合的三维手部姿态估计算法。首先,提出结合扩张卷积和CBAM(Convolutional Block Attention Module)注意力机制的感受强化模块(S... 针对因遮挡和自相似性导致的从单张RGB图像估计三维手部姿态不精确的问题,提出结合注意力机制和多尺度特征融合的三维手部姿态估计算法。首先,提出结合扩张卷积和CBAM(Convolutional Block Attention Module)注意力机制的感受强化模块(SEM),以替换沙漏网络(HGNet)中的基本块(Basicblock),在扩大感受野的同时增强对空间信息的敏感性,从而提高手部特征的提取能力;其次,设计一种结合SPCNet(Spatial Preserve and Contentaware Network)和Soft-Attention改进的多尺度信息融合模块SS-MIFM(SPCNet and Soft-attention-Multi-scale Information Fusion Module),在充分考虑空间内容感知机制的情况下,有效地聚合多级特征,并显著提高二维手部关键点检测的准确性;最后,利用2.5D姿态转换模块将二维姿态转换为三维姿态,从而避免二维关键点坐标直接回归计算三维姿态信息导致的空间丢失问题。实验结果表明,在InterHand2.6M数据集上,所提算法的双手关节点平均误差(MPJPE)、单手MPJPE和根节点平均误差(MRRPE)分别达到了12.32、9.96和29.57 mm;在RHD(Rendered Hand pose Dataset)上,与InterNet和QMGR-Net算法相比,所提算法的终点误差(EPE)分别降低了2.68和0.38 mm。以上结果说明了所提算法能够更准确地估计手部姿态,且在一些双手交互和遮挡的场景下有更高的鲁棒性。 展开更多
关键词 手部姿态估计 尺度特征融合 注意力机制 高分辨率网络 沙漏网络
在线阅读 下载PDF
基于注意力与多尺度特征融合的三维点云语义分割
8
作者 张海鹏 段勇 《传感技术学报》 北大核心 2025年第7期1262-1269,共8页
针对在真实室内场景中的三维点云语义分割网络在单尺度下无法充分提取特征,从而导致准确度下降的问题,提出了一种基于注意力机制与多尺度特征相融合的点云语义分割方法。首先,使用支持向量机构造特征提取网络,并从中提取出4个具有残差... 针对在真实室内场景中的三维点云语义分割网络在单尺度下无法充分提取特征,从而导致准确度下降的问题,提出了一种基于注意力机制与多尺度特征相融合的点云语义分割方法。首先,使用支持向量机构造特征提取网络,并从中提取出4个具有残差结构的不同尺度的特征分支;然后,将各分支输出的多尺度特征进行融合,并利用融合后的特征进行点云属性分类,以弥补点云提取过程中可能丢失的目标信息;最后,在特征构造模块与特征提取模块之间引入了改进的注意力模块,旨在重点学习场景的物体特征,同时更好地捕捉点云中的全局空间关系,从而提高语义分割的准确性。实验结果表明,提出的方法能取得较好的点云语义分割效果,在S3DIS数据集上准确率达到了82%,平均交并比达到了50.04%。 展开更多
关键词 点云 语义分割 深度学习 注意力机制 尺度特征
在线阅读 下载PDF
基于多尺度注意力与特征融合的行人重识别方法研究
9
作者 吴宇森 于宝华 +1 位作者 荣江 张数 《石河子大学学报(自然科学版)》 北大核心 2025年第1期122-132,共11页
行人重识别又称行人再识别,是一种在跨摄像头环境下识别相同行人的技术。目前,由于行人姿势变化、灯光角度、障碍遮挡等问题影响,导致现有方法提取行人特征受到干扰较大,影响识别效果。针对该问题,提出将NFormer嵌入主干网络的不同层级... 行人重识别又称行人再识别,是一种在跨摄像头环境下识别相同行人的技术。目前,由于行人姿势变化、灯光角度、障碍遮挡等问题影响,导致现有方法提取行人特征受到干扰较大,影响识别效果。针对该问题,提出将NFormer嵌入主干网络的不同层级,构建多尺度注意力模块(Multi-Scale Attention-NFormer, MSAN),提取细节丰富的底层特征与表征能力强的高层特征进行融合;提出结合可学习视觉中心与多层感知器,构建了基于可学习视觉中心与多层感知器的特征融合模块(Feature Fusion with Learnable Visual Centers and Multilayer Perceptron, FFLM),提取关联位置信息的局部特征与长距离依赖的全局特征,并将其融合获取更具辨别性的特征表达。为了使主干网络与头部网络更适用于特征融合任务,对ResNet50的激活函数和搭建架构进行改进,保留了更丰富的特征信息;在头部网络添加BN层和GeM池化,缓解了损失函数优化方向不同步的问题。实验结果表明,所提方法在Market-1501和DukeMTMC-reID数据集上的首位命中率分别达到了95.8%、90.2%,平均精度均值为93.0%、84.7%,所提取的特征更具有判别性,识别率更高。 展开更多
关键词 行人重识别 特征融合 尺度 注意力机制 深度学习
在线阅读 下载PDF
多尺度特征注意力网络下的卫星信号识别研究
10
作者 李云 杨松林 +2 位作者 邢智童 吴广富 马豪 《电子与信息学报》 北大核心 2025年第6期1792-1802,共11页
针对卫星通信信号调制识别难题以及忽略不同频率和时间尺度特征的融合问题,该文提出多尺度特征注意力网络模型。该模型融合去噪卷积模块和多尺度全局感知模块,利用多尺度膨胀卷积和空间金字塔池化,结合高效通道注意力机制,有效捕捉不同... 针对卫星通信信号调制识别难题以及忽略不同频率和时间尺度特征的融合问题,该文提出多尺度特征注意力网络模型。该模型融合去噪卷积模块和多尺度全局感知模块,利用多尺度膨胀卷积和空间金字塔池化,结合高效通道注意力机制,有效捕捉不同频率和时间尺度特征。实验表明,在典型莱斯信道及数字视频广播卫星第2代标准信号制式下,该模型在[0,5]dB区间内,对QPSK等卫星典型调制信号的类间识别率达到96.8%,性能优于传统模型的同时,参数量以及单周期训练时间显著减少,并且在低信噪比下仍保持高识别精度,充分验证了模型算法的有效性。 展开更多
关键词 卫星通信 信号识别 尺度特征 通道注意力机制 深度学习
在线阅读 下载PDF
结合注意力和多尺度特征的电动汽车负荷预测
11
作者 肖霞 马强 杨震 《电子测量技术》 北大核心 2025年第5期57-64,共8页
针对电动汽车负荷随机性以及预测精度低的问题,在TCN基础上,提出一种结合变分模态分解、注意力机制和多尺度特征的电动汽车负荷预测模型(VMD-AM-MSF-TCNnet)。首先,采用鲸鱼优化算法结合变分模态分解将电动汽车负荷序列分解;其次,引入... 针对电动汽车负荷随机性以及预测精度低的问题,在TCN基础上,提出一种结合变分模态分解、注意力机制和多尺度特征的电动汽车负荷预测模型(VMD-AM-MSF-TCNnet)。首先,采用鲸鱼优化算法结合变分模态分解将电动汽车负荷序列分解;其次,引入门控机制和双重注意力改进TCN残差块结构,把不同尺寸的改进TCN残差块与注意力相结合实现多尺度特征融合;最后,对负荷分量进行预测再重构得到最终结果。实验结果表明,所提模型相比原始TCN在RSE、RAE、R~2性能指标上均有所提升,该模型具有较好的预测效果。 展开更多
关键词 TCN 变分模态分解 注意力机制 尺度特征 鲸鱼优化算法
在线阅读 下载PDF
基于多尺度特征融合和注意力机制的视频异常检测方法
12
作者 吴祥 肖剑 吉根林 《应用科学学报》 北大核心 2025年第2期234-244,共11页
视频画面中的运动物体在不同时刻往往呈现出多样的尺度大小,这给视频异常检测带来了一定的挑战。尽管传统的生成对抗网络在视频异常检测任务上取得了一定成效,但因其采用单一尺度的特征提取方法,无法充分捕获不同尺度物体的特征,从而限... 视频画面中的运动物体在不同时刻往往呈现出多样的尺度大小,这给视频异常检测带来了一定的挑战。尽管传统的生成对抗网络在视频异常检测任务上取得了一定成效,但因其采用单一尺度的特征提取方法,无法充分捕获不同尺度物体的特征,从而限制了其异常检测的性能。针对该问题,本文基于生成对抗网络结构,提出了一种基于多尺度特征融合和注意力机制的视频异常检测方法。使用大小不同的卷积核捕获不同感受野的特征,并将它们进行融合以获得多尺度的特征表示。此外,在生成器的转置卷积层后引入坐标注意力机制,自适应分配特征图权重,从而增强模型对关键特征的感知能力。在公开数据集UCSD Ped2和Avenue上的实验结果表明,本文方法的性能优于其他同类方法。 展开更多
关键词 视频异常检测 深度学习 生成对抗网络 尺度特征融合 注意力机制
在线阅读 下载PDF
联合可变形特征和多尺度注意力的结核杆菌图像检测
13
作者 周梦丽 钟铭恩 +3 位作者 谭佳威 袁彬淦 邓智颖 杨凯博 《中国生物医学工程学报》 北大核心 2025年第3期301-311,共11页
结核病是一种常见、多发且较为凶险的传染性疾病,目前主要采用痰涂片人工镜检。由于结核杆菌在显微场景下具有尺度小、菌体粘连和形态不规整等特点,易造成漏检和错检。为此,基于深度学习技术提出一种痰液显微图像结核杆菌的自动检测算法... 结核病是一种常见、多发且较为凶险的传染性疾病,目前主要采用痰涂片人工镜检。由于结核杆菌在显微场景下具有尺度小、菌体粘连和形态不规整等特点,易造成漏检和错检。为此,基于深度学习技术提出一种痰液显微图像结核杆菌的自动检测算法MTDet。首先,构建轻量化的基础特征提取网络,以全局注意的方式捕捉菌体堆积粘连时的空间关系和个体局部特征;其次,利用自主设计的可变形特征聚合模块DC2f和高效多尺度注意力EMA来重构特征,自适应结核杆菌的多种形态;最后,在检测头中增加高分辨率分支,提升模型对小目标的感知能力。在结核杆菌显微图像公开数据集Tuberculosis-phonecamera和ZNSM iDB上的实验结果表明:算法平均检测准确率分别为90.2%和87.9%,召回率分别为84.1%和83.2%,均超越了现有主流算法。此外,基于WHO的结核病诊断标准,针对220例临床样本的综合准确率为96.8%,其中假阳率为6.5%,假阴率为0%。本研究结果有望为结核病的辅助诊断带来帮助。 展开更多
关键词 结核杆菌检测 痰涂片图像 小目标 特征聚合 尺度注意力
在线阅读 下载PDF
基于融合注意力和多尺度特征的热轧带钢表面缺陷检测方法
14
作者 包广清 周芷意 孟庆成 《北京工业大学学报》 北大核心 2025年第8期944-956,共13页
针对热扎带钢表面缺陷面积较小、形态多样、边界模糊且背景复杂的问题,提出一种热轧带钢表面缺陷检测模型SFSP-YOLOv7。首先,通过改进k-means++聚类算法调整先验框维度,使用交并比(intersection over union, IoU)距离替换欧氏距离度量,... 针对热扎带钢表面缺陷面积较小、形态多样、边界模糊且背景复杂的问题,提出一种热轧带钢表面缺陷检测模型SFSP-YOLOv7。首先,通过改进k-means++聚类算法调整先验框维度,使用交并比(intersection over union, IoU)距离替换欧氏距离度量,引入遗传算法(genetic algorithm, GA)以获得更具代表性的锚框尺寸,并提升模型的回归速度和小面积缺陷检测的精确度。其次,对于边界模糊且背景复杂的缺陷,提出一种目标检测边界框损失函数FocalSIoU,以减少模型中不必要特征的学习,加快检测速度,提升预测框的回归效果。最后,设计一种多尺度特征融合模块(multi-scale feature fusion module, MFFM),通过多尺度信息融合增强模型特征提取能力,提高小目标的检测精确度,并改善模型检测误检率。在模型Head结构中引入空到深(space to depth, SPD)卷积模块对模型进行改进,避免细粒度信息的丢失,降低目标漏检率。通过NEU-DET数据集进行验证,结果表明,SFSP-YOLOv7模型检测的平均精度均值(mean average precision, mAP)为78.3%,相比原YOLOv7模型提升了5.0个百分点,表明提出的检测方法具有有效性。 展开更多
关键词 带钢表面缺陷检测 深度学习 YOLOv7 损失函数 注意力机制 尺度特征融合
在线阅读 下载PDF
基于特征增强的双重注意力去雾网络 被引量:1
15
作者 陈海秀 黄仔洁 +5 位作者 陆康 陆成 何珊珊 房威志 卢海涛 陈子昂 《电光与控制》 北大核心 2025年第1期15-20,67,共7页
针对现有去雾方法处理的图像细节模糊和色彩偏差等问题,提出了一种基于特征增强的双重注意力去雾网络。该网络采用编码器-解码器结构,设计了一个双重注意力特征增强模块,其中,利用Ghost模块替代非线性卷积,实现模型轻量化处理,通过RFB... 针对现有去雾方法处理的图像细节模糊和色彩偏差等问题,提出了一种基于特征增强的双重注意力去雾网络。该网络采用编码器-解码器结构,设计了一个双重注意力特征增强模块,其中,利用Ghost模块替代非线性卷积,实现模型轻量化处理,通过RFB充分融合不同尺度的特征,实现均匀去雾,引入双重注意力实现信息跨通道与空间交互,保证模型性能和抑制噪声特征。使用RESIDE数据集对网络进行训练和测试。实验结果表明,所提算法在主观视觉和客观评价指标上均有优异表现,能有效地提升网络的特征提取能力,实现对不同场景雾图的色彩恢复,增强图像的对比度和清晰度。 展开更多
关键词 图像去雾 特征增强 并行分支结构 尺度映射 注意力机制
在线阅读 下载PDF
轻量化的多尺度注意力脊柱侧弯筛查方法 被引量:1
16
作者 郝子强 唐颖 +2 位作者 田芳 张岩 詹伟达 《计算机工程与应用》 北大核心 2025年第3期286-294,共9页
近年来,深度学习越来越多地应用于脊柱侧弯筛查技术研究,并且取得了突出的成效。为了解决脊柱侧弯筛查的精度和效率不高,无法满足大规模脊柱侧弯筛查需要的问题,设计了一种轻量化的多尺度注意力卷积神经网络,对ResNet50进行改进,取得了... 近年来,深度学习越来越多地应用于脊柱侧弯筛查技术研究,并且取得了突出的成效。为了解决脊柱侧弯筛查的精度和效率不高,无法满足大规模脊柱侧弯筛查需要的问题,设计了一种轻量化的多尺度注意力卷积神经网络,对ResNet50进行改进,取得了较好的筛查效果。提出了一种多尺度残差特征提取模块,使用不同大小的卷积核,提取不同尺度的信息;使用三个残差块并在残差块中使用一种混合注意力机制,关注通道和空间两方面的信息,增强特征提取能力;将普通卷积替换成一种深度混洗卷积,在精度损失不多的情况下,提高网络效率;提出了一种多层次特征融合模块,将多个层次信息进行特征融合,提取更加多样化的特征信息。实验证明,相比ResNet50总体准确率提高了11.19个百分点,测试时长减少了2 s。 展开更多
关键词 脊柱侧弯 深度学习 尺度特征 注意力机制
在线阅读 下载PDF
多尺度特征交互的伪标签无监督域自适应行人重识别 被引量:1
17
作者 刘仲民 杨富君 胡文瑾 《光电工程》 北大核心 2025年第1期53-66,共14页
针对无监督域自适应行人重识别中存在的感受野不足、全局特征与局部特征联系不紧密等问题,提出了一种多尺度特征交互的无监督域自适应行人重识别方法。首先利用特征压缩注意力机制对图像特征进行压缩并输入到网络以增强丰富的局部信息... 针对无监督域自适应行人重识别中存在的感受野不足、全局特征与局部特征联系不紧密等问题,提出了一种多尺度特征交互的无监督域自适应行人重识别方法。首先利用特征压缩注意力机制对图像特征进行压缩并输入到网络以增强丰富的局部信息。其次,设计了残差特征交互模块,通过特征交互的方式将全局信息编码到特征中,同时增大模型感受野,强化网络对行人特征信息的提取能力。最后,采用基于部分卷积的瓶颈层模块在部分输入通道上进行卷积运算以减少冗余计算,提高空间特征提取效率。实验结果显示,该方法在三个适应性数据集上mAP分别达到了82.9%、68.7%、26.6%,Rank-1分别达到了93.7%、82.7%、54.7%,Rank-5分别达到了97.4%、89.9%、67.5%。表明所提方法能够使行人特征得到更好的表达,识别精度得到提高。 展开更多
关键词 行人重识别 无监督域自适应 特征压缩 尺度特征交互 部分卷积
在线阅读 下载PDF
基于跨层注意力特征交互和多尺度通道注意力的单幅图像去雾网络
18
作者 孙航 付秋月 +3 位作者 李勃辉 但志平 余梅 万俊 《电子学报》 EI CAS CSCD 北大核心 2024年第11期3711-3726,共16页
近年来,基于U型结构的卷积神经网络在去雾领域取得了显著的成果.然而,大多数基于U型结构的去雾网络将编码层特征直接传递到对应尺度的解码层,忽略了不同层次特征信息的有效利用.此外,去雾网络中广泛使用的通道注意力受感受野的限制,没... 近年来,基于U型结构的卷积神经网络在去雾领域取得了显著的成果.然而,大多数基于U型结构的去雾网络将编码层特征直接传递到对应尺度的解码层,忽略了不同层次特征信息的有效利用.此外,去雾网络中广泛使用的通道注意力受感受野的限制,没有充分地利用上下文信息,从而对通道权重的学习起负面作用,使得重构的清晰图像不够理想.为了解决上述问题,本文提出了一种跨层注意力特征交互和多尺度通道注意力的去雾算法.具体来说,跨层注意力特征交互模块利用编码层的多尺度跨层特征学习层级权重,然后将这些跨层特征聚合传递到对应解码层,从而减少了去雾网络重构清晰图像过程中的特征稀释.此外,为了挖掘对于去雾网络非常重要的特征通道信息,本文设计了多尺度通道注意力机制,利用不同空洞率的空洞卷积提取多尺度特征信息,形成一个多尺度上下文并行学习的通道注意力机制,可以更有效地为去雾网络的特征分配权重.实验结果表明,本文提出的去雾算法在4个公开的数据集上相比现有的12种去雾方法取得了较好的客观评价指标和视觉效果.本文的代码已上传至https://github.com/bohuisir/AAFMAN. 展开更多
关键词 图像去雾 跨层注意力特征交互 特征稀释 尺度通道注意力 空洞卷积
在线阅读 下载PDF
基于动态自适应通道注意力特征融合的小目标检测
19
作者 吴迪 赵品懿 +2 位作者 甘升隆 沈学军 万琴 《电子科技大学学报》 北大核心 2025年第2期221-232,共12页
针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的... 针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的问题。2)提出一种分组批量动态自适应通道注意力模块,增强弱语义小目标特征同时抑制无用信息,且在动态自适应通道注意力模块中设计新的激活函数和交并比损失函数,提升通道注意力表征能力。3)采用ResNet50作为骨干网络依次连接特征金字塔网络和Tri-Neck网络。实验结果表明,该方法在Pascal Voc 2007、Pascal Voc 2012上比YOLOv8算法mAP分别提升5.3%和6.2%,在MS COCO 2017数据集上AP和AP_S分别提升1.6%和2%,在SODA-D数据集上比YOLOv8算法AP提升0.9%。 展开更多
关键词 小目标检测 尺度融合特征 特征金字塔 动态通道注意力 交并比损失函数
在线阅读 下载PDF
基于多尺度通道注意力卷积神经网络的轴向柱塞泵故障诊断研究
20
作者 刘增光 张帅迪 +3 位作者 周焱 魏列江 岳大灵 冯珂 《机床与液压》 北大核心 2025年第14期124-130,共7页
针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑... 针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑靴磨损、松靴故障、中心弹簧失效),采集6种工作状态(正常状态及5种典型故障)下的z轴振动信号。以小波变换为信号预处理模块,将加速度传感器采集的一维振动信号转化为时频图并作为诊断模型的输入信号,采用不同尺度的卷积核对时频图进行特征提取。通过通道注意力为每个通道赋予不同的权重值,使模型能够集中学习与通道密切相关的特征信息,从而提高轴向柱塞泵的故障分类能力和诊断的效率。搭建轴向柱塞泵故障诊断实验平台,验证所提方法的有效性。结果表明:该模型对6种工作状态的诊断准确率达到99.65%,相比传统多尺度卷积神经网络模型提高了3.16%,验证了MSCA-CNN模型在轴向柱塞泵故障诊断中的优越性。 展开更多
关键词 故障诊断 卷积神经网络 通道注意力 尺度特征 柱塞泵
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部