DC-DC变换器是实现不同电压等级和拓扑结构的高压直流HVDC(high voltage direct current)电网互联的关键设备,随着新型电力系统的逐步建设,DC-DC变换器成为新型电力系统领域的研究热点之一。DC-DC变换器具有许多优点:可增加电网的可控性...DC-DC变换器是实现不同电压等级和拓扑结构的高压直流HVDC(high voltage direct current)电网互联的关键设备,随着新型电力系统的逐步建设,DC-DC变换器成为新型电力系统领域的研究热点之一。DC-DC变换器具有许多优点:可增加电网的可控性,可增强电网潮流控制、电压调节和故障阻断的能力。其中,直流模块化多电平变换器DC-MMC(DC modular multilevel converter)是用于互连具有相同线路拓扑HVDC系统的一种有效非隔离方法,然而,实际中直流系统往往电压等级和拓扑结构差别较大。基于此,提出了一种新型柔性DC-MMC的控制策略,该控制方法可实现不同线路拓扑HVDC的互连,如双极子与对称单极子互连。首先,详细阐述了高压直流输电系统中不同线路拓扑的特性;然后,针对新型DC-MMC建立了1种含变量变换的数学模型,并提出了基于平均桥臂模型和简化直流电网的控制方法;最后,在MATLAB/Simulink中进行仿真验证,结果验证了所提方法可保障DC-MMC在正常运行和降级运行下均能正常工作。展开更多
模块化多电平换流器(modular multilevel converter,MMC)为多电平换流器家族中的一员,其技术特点非常适用于电压源换流器型高压直流(voltage source converter high voltage direct current,VSC-HVDC)输电领域。为了分析MMC的最新研究进...模块化多电平换流器(modular multilevel converter,MMC)为多电平换流器家族中的一员,其技术特点非常适用于电压源换流器型高压直流(voltage source converter high voltage direct current,VSC-HVDC)输电领域。为了分析MMC的最新研究进展,首先介绍了MMC的拓扑电路及其工作原理,分析了其技术特点和应用领域,比较了其相对于传统2电平和3电平VSC拓扑的优势所在。然后分别从MMC的数学模型、调制策略、子模块电容均压、预充电、内部环流、控制方面、换流阀试验以及其在VSC-HVDC系统中的工程应用等方面,回顾了MMC目前在国内外的最新研究进展和工程应用现状,并指出了MMC自身的缺点和今后亟待研究的关键问题。已有的研究表明,MMC在电力系统中有着广阔的应用前景,是未来高压直流输电技术的一个重要发展方向。展开更多
模块化多电平换流器(modular multilevel converter,MMC)是高压直流输电(high voltage direct current,HVDC)系统中最具潜力的拓扑结构之一。针对MMC中存在的直流侧电容电压平衡及桥臂间的环流问题,提出了一种基于重复控制原理的模型预...模块化多电平换流器(modular multilevel converter,MMC)是高压直流输电(high voltage direct current,HVDC)系统中最具潜力的拓扑结构之一。针对MMC中存在的直流侧电容电压平衡及桥臂间的环流问题,提出了一种基于重复控制原理的模型预测控制策略,通过求解一个最优化问题,得到每个MMC单元中最佳的开关状态,来抑制循环电流,并实现MMC单元的电容电压平衡。最后,在Matlab/Simulink中对五电平背靠背MMC-HVDC的重复预测控制进行性能评估。仿真结果表明,基于重复预测控制策略的MMC-HVDC系统运行更理想,实现过程容易且简单。展开更多
针对模块化多电平换流器型高压直流输电系统(modular multilevel converter based high-voltage direct current,MMC-HVDC),为了确保停运过程中子模块电容能够可靠且快速地放电,提出一套完整的停运控制策略。根据作用机理的不同,停运过...针对模块化多电平换流器型高压直流输电系统(modular multilevel converter based high-voltage direct current,MMC-HVDC),为了确保停运过程中子模块电容能够可靠且快速地放电,提出一套完整的停运控制策略。根据作用机理的不同,停运过程被划分为能量反馈阶段、可控能量耗散阶段和不可控能量耗散阶段。在能量反馈阶段中,通过提高调制比m,三次谐波注入,调节换流变压器变比及冗余子模块的投入,降低子模块电容电压,最大程度地将电容中的储存能量反馈至电网。在可控能量耗散阶段,子模块电容通过直流线路或者启动电阻进行放电,避免了放电电阻的使用。在不可控能量耗散阶段,子模块电容仅通过子模块电阻进行放电。最后,基于时域仿真软件PSCAD/EMTDC下搭建的400 MW/±200 kV数字仿真模型,验证所提出方法的有效性。展开更多
文摘DC-DC变换器是实现不同电压等级和拓扑结构的高压直流HVDC(high voltage direct current)电网互联的关键设备,随着新型电力系统的逐步建设,DC-DC变换器成为新型电力系统领域的研究热点之一。DC-DC变换器具有许多优点:可增加电网的可控性,可增强电网潮流控制、电压调节和故障阻断的能力。其中,直流模块化多电平变换器DC-MMC(DC modular multilevel converter)是用于互连具有相同线路拓扑HVDC系统的一种有效非隔离方法,然而,实际中直流系统往往电压等级和拓扑结构差别较大。基于此,提出了一种新型柔性DC-MMC的控制策略,该控制方法可实现不同线路拓扑HVDC的互连,如双极子与对称单极子互连。首先,详细阐述了高压直流输电系统中不同线路拓扑的特性;然后,针对新型DC-MMC建立了1种含变量变换的数学模型,并提出了基于平均桥臂模型和简化直流电网的控制方法;最后,在MATLAB/Simulink中进行仿真验证,结果验证了所提方法可保障DC-MMC在正常运行和降级运行下均能正常工作。
文摘模块化多电平换流器(modular multilevel converter,MMC)为多电平换流器家族中的一员,其技术特点非常适用于电压源换流器型高压直流(voltage source converter high voltage direct current,VSC-HVDC)输电领域。为了分析MMC的最新研究进展,首先介绍了MMC的拓扑电路及其工作原理,分析了其技术特点和应用领域,比较了其相对于传统2电平和3电平VSC拓扑的优势所在。然后分别从MMC的数学模型、调制策略、子模块电容均压、预充电、内部环流、控制方面、换流阀试验以及其在VSC-HVDC系统中的工程应用等方面,回顾了MMC目前在国内外的最新研究进展和工程应用现状,并指出了MMC自身的缺点和今后亟待研究的关键问题。已有的研究表明,MMC在电力系统中有着广阔的应用前景,是未来高压直流输电技术的一个重要发展方向。
文摘模块化多电平换流器(modular multilevel converter,MMC)是高压直流输电(high voltage direct current,HVDC)系统中最具潜力的拓扑结构之一。针对MMC中存在的直流侧电容电压平衡及桥臂间的环流问题,提出了一种基于重复控制原理的模型预测控制策略,通过求解一个最优化问题,得到每个MMC单元中最佳的开关状态,来抑制循环电流,并实现MMC单元的电容电压平衡。最后,在Matlab/Simulink中对五电平背靠背MMC-HVDC的重复预测控制进行性能评估。仿真结果表明,基于重复预测控制策略的MMC-HVDC系统运行更理想,实现过程容易且简单。
文摘针对模块化多电平换流器型高压直流输电系统(modular multilevel converter based high-voltage direct current,MMC-HVDC),为了确保停运过程中子模块电容能够可靠且快速地放电,提出一套完整的停运控制策略。根据作用机理的不同,停运过程被划分为能量反馈阶段、可控能量耗散阶段和不可控能量耗散阶段。在能量反馈阶段中,通过提高调制比m,三次谐波注入,调节换流变压器变比及冗余子模块的投入,降低子模块电容电压,最大程度地将电容中的储存能量反馈至电网。在可控能量耗散阶段,子模块电容通过直流线路或者启动电阻进行放电,避免了放电电阻的使用。在不可控能量耗散阶段,子模块电容仅通过子模块电阻进行放电。最后,基于时域仿真软件PSCAD/EMTDC下搭建的400 MW/±200 kV数字仿真模型,验证所提出方法的有效性。