序列化信息瓶颈(Sequential information bottleneck,sIB)算法是一种广泛使用的聚类算法。该算法采用联合概率模型表示数据,对样本和属性的相关性有较好的表达能力。但是sIB算法采用的联合概率模型假设数据各个属性对聚类的贡献度相同,...序列化信息瓶颈(Sequential information bottleneck,sIB)算法是一种广泛使用的聚类算法。该算法采用联合概率模型表示数据,对样本和属性的相关性有较好的表达能力。但是sIB算法采用的联合概率模型假设数据各个属性对聚类的贡献度相同,从而削弱了聚类效果。本文提出了赋权联合概率模型概念,采用互信息度量属性重要度,并构建赋权联合概率模型来优化数据表示,从而达到突出代表性属性、抑制冗余属性的目的。UCI数据集上的实验表明,基于赋权联合概率模型的WJPM_sIB算法优于sIB算法,在F1评价下,WJPM_sIB算法聚类结果比sIB算法提高了5.90%。展开更多
K-栅栏覆盖是有向传感器网络的研究热点之一.概率感知模型要比0-1模型更贴近实际.而基于概率感知模型的栅栏覆盖还鲜有研究.根据感知概率阈值和感知距离要求,确定节点的虚拟半径.提出一种二元概率栅栏覆盖模型.在这个模型中,相邻2个节...K-栅栏覆盖是有向传感器网络的研究热点之一.概率感知模型要比0-1模型更贴近实际.而基于概率感知模型的栅栏覆盖还鲜有研究.根据感知概率阈值和感知距离要求,确定节点的虚拟半径.提出一种二元概率栅栏覆盖模型.在这个模型中,相邻2个节点的虚拟感知圆两两相切.在此基础上提出了最少节点的概率栅栏构建算法(construction of probabilistic barrier of minimum node,CPBMN).首先根据二元概率栅栏模型确定节点的目标位置,再通过匈牙利算法选用移动距离之和最少的移动节点移动到目标位置形成栅栏覆盖,缺少移动节点的子区域,选择附近区域的剩余移动节点修补形成1-栅栏覆盖.水平相邻的2个子区域之间构建竖直栅栏,这些子区域的概率1-栅栏合起来构成整个区域的概率K-栅栏覆盖.仿真结果证明:该方法能够有效形成概率栅栏,最多比其他栅栏构建算法节省70%能耗.展开更多
文摘序列化信息瓶颈(Sequential information bottleneck,sIB)算法是一种广泛使用的聚类算法。该算法采用联合概率模型表示数据,对样本和属性的相关性有较好的表达能力。但是sIB算法采用的联合概率模型假设数据各个属性对聚类的贡献度相同,从而削弱了聚类效果。本文提出了赋权联合概率模型概念,采用互信息度量属性重要度,并构建赋权联合概率模型来优化数据表示,从而达到突出代表性属性、抑制冗余属性的目的。UCI数据集上的实验表明,基于赋权联合概率模型的WJPM_sIB算法优于sIB算法,在F1评价下,WJPM_sIB算法聚类结果比sIB算法提高了5.90%。
文摘K-栅栏覆盖是有向传感器网络的研究热点之一.概率感知模型要比0-1模型更贴近实际.而基于概率感知模型的栅栏覆盖还鲜有研究.根据感知概率阈值和感知距离要求,确定节点的虚拟半径.提出一种二元概率栅栏覆盖模型.在这个模型中,相邻2个节点的虚拟感知圆两两相切.在此基础上提出了最少节点的概率栅栏构建算法(construction of probabilistic barrier of minimum node,CPBMN).首先根据二元概率栅栏模型确定节点的目标位置,再通过匈牙利算法选用移动距离之和最少的移动节点移动到目标位置形成栅栏覆盖,缺少移动节点的子区域,选择附近区域的剩余移动节点修补形成1-栅栏覆盖.水平相邻的2个子区域之间构建竖直栅栏,这些子区域的概率1-栅栏合起来构成整个区域的概率K-栅栏覆盖.仿真结果证明:该方法能够有效形成概率栅栏,最多比其他栅栏构建算法节省70%能耗.