期刊文献+
共找到1,604篇文章
< 1 2 81 >
每页显示 20 50 100
基于超像素分割的模糊C-均值聚类证件水印分割算法研究
1
作者 张梅 王杰 《印刷与数字媒体技术研究》 北大核心 2025年第5期29-37,共9页
针对出入境证件上的传统水印分割问题,本研究提出了一种基于超像素分割的模糊C-均值聚类的水印分割方法。首先,超像素分割算法将水印图像划分为多个具有相似特征的小区域,大幅降低了后续处理的数据量,同时有效保留了图像的结构与细节信... 针对出入境证件上的传统水印分割问题,本研究提出了一种基于超像素分割的模糊C-均值聚类的水印分割方法。首先,超像素分割算法将水印图像划分为多个具有相似特征的小区域,大幅降低了后续处理的数据量,同时有效保留了图像的结构与细节信息,为模糊C-均值聚类提供了更具代表性的样本。然后,模糊C-均值聚类算法充分发挥其处理数据模糊性的优势,对超像素块进行聚类分析,准确地将水印区域从背景中分离出来。实验结果表明,该方法在复杂背景下,依然能有效地提取出清晰的水印区域,从而在出入境证件传统水印分割领域展现出实用性和有效性。这对于传统水印图像的处理具有重要意义,为后续水印的识别、保护与分析提供了强有力的支持。 展开更多
关键词 传统水印 图像分割 模糊c-均值 超像素分割
在线阅读 下载PDF
满足本地差分隐私的混合噪音感知的模糊C均值聚类算法 被引量:3
2
作者 张朋飞 程俊 +4 位作者 张治坤 方贤进 孙笠 王杰 姜茸 《电子与信息学报》 北大核心 2025年第3期739-757,共19页
在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪... 在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪音,致使聚类精度低下。同时,对于衡量用户提交数据和簇心之间的距离选择较为武断,没有充分利用到用户提交的噪音数据中蕴含的噪音模式。为此,该文创新性地提出一种满足LDP的混合噪音感知的模糊C均值聚类算法(mnFCM),该算法的主要思想是同时建模用户上传数据中蕴含的表示用户质量的高斯噪音以及为保护用户数据注入的拉普拉斯噪音,进而设计出混合噪音感知的距离替代传统的欧式距离,来衡量样本数据与簇心间的相似性。特别地,在mnFCM中,该文首先设计了混合噪音感知的距离计算方法,在此基础上给出算法新的目标函数,并基于拉格朗日乘子法设计了求解方法,最后理论上分析了求解算法的收敛性。该文进一步理论分析了mnFCM的隐私、效用和复杂度,分析结果表明所提算法严格满足LDP、相对于对比算法更接近非隐私下的簇心以及和非隐私算法具有接近的复杂度。在两个真实数据集上的实验结果表明,mnFCM在满足LDP下,聚类精度提高了10%~15%。 展开更多
关键词 分析 隐私保护 本地差分隐私 模糊C均值 拉普拉斯机制
在线阅读 下载PDF
采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法 被引量:2
3
作者 黄鹤 黄佳慧 +2 位作者 刘国权 王会峰 高涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期214-226,共13页
针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时... 针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时融合了精英反向化思路,显著提升了鹈鹕优化算法(POA)的收敛趋势和全局寻优能力,提高了寻找FCM最优聚类中心的成功率;利用DEAMPOA结合加权熵法对FCM进行优化,提高鲁棒性的同时增强了搜索精度,得到较好的聚类结果;在8种UCI标准数据集上与4种算法对比进行聚类性能评估实验,验证了所提方法综合性能优越;将所提方法与信息熵融合,并应用在三维点云KITTI数据集简化中。实验结果表明:与包围框简化法、随机采样简化法和特征选择简化法对比,所提方法全局误差简化前后点集之间平均欧式距离(MED)指标分别降低了2.25%、6.93%、5.74%,点云简化效果最优且运行速度满足要求。 展开更多
关键词 c-均值 鹈鹕优化算法 点云简化 信息熵
在线阅读 下载PDF
基于非局部信息和子空间的模糊C有序均值聚类的图像分割算法
4
作者 陈阳 黄成泉 +3 位作者 覃小素 彭家磊 雷欢 周丽华 《计算机辅助设计与图形学学报》 北大核心 2025年第3期506-518,共13页
针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图... 针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图像中给定的相似邻域结构的像素提取当前像素的非局部空间信息;其次,计算每个像素的典型性,并对其进行排序,在每次迭代中更新像素的典型性,提高像素聚类的准确性,解决在聚类过程中存在相似类导致的误分类问题;最后,引入子空间聚类概念,为图像不同维度分配适当的权重,提高彩色图像的分割性能.在含噪合成图像和公开数据集BSDS500,MSRA100和AID上实验结果表明,所提算法的模糊划分系数、模糊划分熵、分割精度和标准化互信息平均值分别达到了95.00%,6.66%,98.77%和95.54%,均优于对比的同类算法. 展开更多
关键词 非局部空间信息 子空间 模糊C有序均值 噪声图像分割 鲁棒性
在线阅读 下载PDF
基于核模糊C-均值和EM混合聚类算法的遥感图像分割 被引量:5
5
作者 王民 张鑫 +2 位作者 贠卫国 卫铭斐 王静 《液晶与显示》 CAS CSCD 北大核心 2017年第12期999-1005,共7页
针对聚类算法在应用中分割速度慢、抑制噪声能力弱等问题,本文提出一种基于核模糊C-均值(Kernel Fuzzy Cmeans,KFCM)和融合期望最大化(EM)算法混合聚类的遥感图像分割。首先给原始KFCM算法引入隐含变量来对像素预定义类别,然后利用EM算... 针对聚类算法在应用中分割速度慢、抑制噪声能力弱等问题,本文提出一种基于核模糊C-均值(Kernel Fuzzy Cmeans,KFCM)和融合期望最大化(EM)算法混合聚类的遥感图像分割。首先给原始KFCM算法引入隐含变量来对像素预定义类别,然后利用EM算法评价预定义的类别是否最优,以此完成对遥感图像的聚类分割。在利用EM算法进行评价时,对KFCM引入空间邻域信息,采用惯性权重对其初始化参数进行优化增强算法效率。与传统的聚类分割方法进行比较,研究结果表明,该方法速度快、效果好、精度也能满足应用要求,具有较高的应用价值。 展开更多
关键词 遥感图像 模糊c-均值 EM 空间邻域 惯性权重
在线阅读 下载PDF
基于模糊核加权C-均值聚类的高光谱图像分类 被引量:19
6
作者 赵春晖 齐滨 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第9期2016-2021,共6页
高光谱图像分类是高光谱数据分析的重要研究内容之一。模糊C-均值聚类算法因其算法简单、收敛速度快等优点受到广泛的关注。由于高光谱数据的维数较高,其光谱波段的非线性特性使得传统模糊C-均值聚类算法无法在原始空间得到较好的聚类... 高光谱图像分类是高光谱数据分析的重要研究内容之一。模糊C-均值聚类算法因其算法简单、收敛速度快等优点受到广泛的关注。由于高光谱数据的维数较高,其光谱波段的非线性特性使得传统模糊C-均值聚类算法无法在原始空间得到较好的聚类结果。另外,模糊C-均值聚类算法在计算聚类中心时,仅使用了各样本对聚类中心的隶属度,忽略了样本之间固有存在的空间分布特征。为此提出了模糊核加权C-均值聚类算法,在计算模糊核聚类中心时,根据样本的空间分布特征,为每个样本分配不同的权值,使得每个核聚类中心随着样本的不同而各有不同。标准数据和实际高光谱数据的实验结果均表明,相比较传统模糊C-均值均聚类算法,模糊核加权C-均值聚类算法在总体分类精度上有较大的提高。 展开更多
关键词 分析 模糊c-均值 非参数加权特征提取 样本空间分布
在线阅读 下载PDF
基于模糊核C-均值聚类分析的HRRP识别 被引量:3
7
作者 单凯晶 肖怀铁 朱俊 《电光与控制》 北大核心 2010年第5期42-45,共4页
由于雷达目标及其所处环境的复杂性,导致目标之间的关系往往是非线性的,因此,基于核方法的模式识别方法被广泛应用于雷达目标识别中。在对模糊核C-均值聚类算法深入研究的基础上,提出一种基于模糊核C-均值聚类的高分辨距离像识别算法。... 由于雷达目标及其所处环境的复杂性,导致目标之间的关系往往是非线性的,因此,基于核方法的模式识别方法被广泛应用于雷达目标识别中。在对模糊核C-均值聚类算法深入研究的基础上,提出一种基于模糊核C-均值聚类的高分辨距离像识别算法。该算法针对特征提取后一维距离像数据的特点,采用组合核函数以降低由于数据属性数值过大造成的权重过大对识别效果的影响;同时,算法可以在训练过程中通过有效性函数自适应地确定最佳聚类数目。仿真实验结果表明,基于组合核函数的识别算法同基于传统的高斯核的算法都能有效识别雷达目标,但前者具有更高的目标识别率。 展开更多
关键词 模糊c-均值算法 一维距离像 特征提取 有效性函数 函数
在线阅读 下载PDF
动态权值混合C-均值模糊核聚类算法 被引量:8
8
作者 王亮 王士同 《计算机应用研究》 CSCD 北大核心 2011年第8期2852-2855,共4页
PCM算法存在聚类重叠的缺陷,PFCM算法同时利用隶属度与典型值把数据样本划分到不同的类中,提高了算法的抗噪能力,但PFCM算法对样本分布不均衡的聚类效果并不十分理想。针对此不足,可以通过Mercer核把原来的数据空间映射到特征空间,并为... PCM算法存在聚类重叠的缺陷,PFCM算法同时利用隶属度与典型值把数据样本划分到不同的类中,提高了算法的抗噪能力,但PFCM算法对样本分布不均衡的聚类效果并不十分理想。针对此不足,可以通过Mercer核把原来的数据空间映射到特征空间,并为特征空间的每个向量分配一个动态权值,从而得到特征空间内的目标函数。理论分析和实验结果表明,相对于其他经典模糊聚类算法,新算法具有更好的健壮性和聚类效果。 展开更多
关键词 模糊 权值 函数 参数 特征空间
在线阅读 下载PDF
改进模糊聚类语义分割声环境功能区划图
9
作者 曾宇 姚琨 秦勤 《噪声与振动控制》 北大核心 2025年第2期210-215,共6页
声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线... 声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线性迭代聚类构建超像素,提取声环境功能区划图特征矩阵,基于K-means++改进模糊C均值聚类算法,语义分割超像素粒化的声环境功能区划图,并以声功能区面积占比计算结果偏差为评价指标,分析超像素尺度对分割结果的影响。然后基于不同图像特征矩阵构建方法和聚类中心初始化方法,使用模糊C均值聚类、高斯混合模型聚类、K-medoids聚类语义分割声环境功能区划图,最后比较不同组合方案的声功能区面积占比计算结果偏差,验证方法的有效性。 展开更多
关键词 声学 声环境功能区划图 彩色图像分割 模糊C均值 简单线性迭代 K-means++算法
在线阅读 下载PDF
犹豫模糊核C-均值聚类用于数据库系统选择 被引量:5
10
作者 邓小燕 《控制工程》 CSCD 北大核心 2020年第1期182-187,共6页
在处理属性值为犹豫模糊信息的聚类分析问题过程中,一般性的犹豫模糊聚类算法在样本空间层面处理过程中存在消耗时间长、距离结果不精确等不足。为了解决这一问题,建立了一种新颖的犹豫模糊聚类算法,即犹豫模糊核C-均值聚类算法,该算法... 在处理属性值为犹豫模糊信息的聚类分析问题过程中,一般性的犹豫模糊聚类算法在样本空间层面处理过程中存在消耗时间长、距离结果不精确等不足。为了解决这一问题,建立了一种新颖的犹豫模糊聚类算法,即犹豫模糊核C-均值聚类算法,该算法运用核函数将样本空间中的数据映射到一个高维特征空间。结果显示,通过提出的犹豫模糊核C-均值聚类算法能够扩大不同样本之间的差异,并且使得聚类结果更加准确。最后,通过数据库系统选择的仿真实验,验证了所提出的犹豫模糊核C-均值聚类算法的可行性和有效性。 展开更多
关键词 算法 犹豫模糊 函数 样本空间 数据库系统
在线阅读 下载PDF
核空间直觉模糊局部C-均值聚类分割算法研究 被引量:2
11
作者 杜朵朵 吴成茂 《计算机工程与应用》 CSCD 北大核心 2016年第19期171-178,共8页
针对现有直觉模糊C-均值聚类仅适合呈团状数据的不足,采用非线性函数将数据样本从欧式空间映射至再生希尔伯特高维特征空间,得到核空间直觉模糊聚类算法;同时考虑相邻像素的相互影响,将邻域像素融入核空间直觉模糊聚类的最优化目标函数... 针对现有直觉模糊C-均值聚类仅适合呈团状数据的不足,采用非线性函数将数据样本从欧式空间映射至再生希尔伯特高维特征空间,得到核空间直觉模糊聚类算法;同时考虑相邻像素的相互影响,将邻域像素融入核空间直觉模糊聚类的最优化目标函数中,经数学推导便得到嵌入像素局部信息的核空间直觉模糊聚类分割算法。图像分割测试结果表明,核直觉模糊C-均值聚类分割法相比现有直觉模糊C-均值聚类分割法能获得更满意的分割效果;同时,嵌入局部信息的核直觉模糊C-均值聚类分割法表现出良好的抗噪鲁棒性。 展开更多
关键词 直觉模糊 空间 局部信息
在线阅读 下载PDF
改进非局部核模糊C-均值聚类的红外图像分割 被引量:7
12
作者 张莲 杨森淋 +2 位作者 禹红良 左兴喜 刘晓丽 《重庆理工大学学报(自然科学)》 CAS 北大核心 2020年第11期130-137,共8页
针对红外图像有着容易受到噪音干扰以及对比度低等特点,提出了最大最小距离法与改进模糊C均值聚类算法结合的图像分割方法。针对标准模糊C均值聚类算法存在的问题,首先通过最大最小距离法确定初始聚类中心,然后利用经非局部空间限制项... 针对红外图像有着容易受到噪音干扰以及对比度低等特点,提出了最大最小距离法与改进模糊C均值聚类算法结合的图像分割方法。针对标准模糊C均值聚类算法存在的问题,首先通过最大最小距离法确定初始聚类中心,然后利用经非局部空间限制项以及高斯核函数改进的模糊C均值聚类算法对红外图像进行分割。经过对一系列红外图像的实验,结果表明:该算法的抗噪能力明显优于其他对比算法,且图像分割错误情况和迭代次数少于其他算法,相比其他对比算法性能更加优越,更适用于红外图像分割。 展开更多
关键词 红外图像分割 模糊C均值 非局部空间信息
在线阅读 下载PDF
基于模糊C-均值聚类的锅炉监控参数基准值建模 被引量:21
13
作者 赵欢 王培红 +2 位作者 钱瑾 苏志刚 彭献永 《中国电机工程学报》 EI CSCD 北大核心 2011年第32期16-22,共7页
锅炉各监控参数基准值的确定是分析锅炉运行能耗偏差的基础。该文充分利用锅炉运行数据的关联特性,提出了一种基于模糊C-均值聚类算法实现多参量同步聚类以确定锅炉监控参数基准值的方法。该方法可以在实际运行数据中同步挖掘出某典型... 锅炉各监控参数基准值的确定是分析锅炉运行能耗偏差的基础。该文充分利用锅炉运行数据的关联特性,提出了一种基于模糊C-均值聚类算法实现多参量同步聚类以确定锅炉监控参数基准值的方法。该方法可以在实际运行数据中同步挖掘出某典型负荷邻域区间对应的排烟氧量、排烟温度和飞灰含碳量等监控参数基准值,从而达到改善锅炉运行性能的目标。在多参量同步聚类算法中,利用有效性函数优化模糊聚类数,提出运行模式支持度的相关概念及其样本支持判定的规则,并对类中心点处较小ε区域内样本进行无偏估计。实例分析结果表明:该方法能够在兼顾参数之间耦合关系的基础上,得到高效工况下对应的各基准值样本点,并建立相应的基准值模型。 展开更多
关键词 基准值 能耗偏差 模糊c-均值 数据挖掘
在线阅读 下载PDF
基于粒子群优化算法的模糊C-均值聚类 被引量:27
14
作者 张利彪 周春光 +2 位作者 马铭 刘小华 孙彩堂 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2006年第2期217-222,共6页
利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小... 利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小的缺陷;同时也降低了FCM算法对初始值的敏感度.实验结果表明,与FCM相比本文算法聚类更为准确,效率更高. 展开更多
关键词 粒子群优化算法 模糊 模糊c-均值算法
在线阅读 下载PDF
核模糊C均值算法的聚类有效性研究 被引量:28
15
作者 普运伟 金炜东 +1 位作者 朱明 胡来招 《计算机科学》 CSCD 北大核心 2007年第2期207-210,229,共5页
针对核模糊C均值聚类(Kernelized Fuzzy C-Means,KFCM)算法的有效性评价,以核非线性映射为工具,将原空间中的六个著名有效性指标推广到高维特征空间,得到其对应的核化形式,并通过数值比较实验考察这些核化指标的性能及其对高斯核宽度β... 针对核模糊C均值聚类(Kernelized Fuzzy C-Means,KFCM)算法的有效性评价,以核非线性映射为工具,将原空间中的六个著名有效性指标推广到高维特征空间,得到其对应的核化形式,并通过数值比较实验考察这些核化指标的性能及其对高斯核宽度β和模糊指数m的敏感特性。结果表明,在所考察的指标中,著名的Xie-Beni指标VXB及其改进指标VK的核化版本具有最好的性能和可靠性,可优先作为KFCM聚类算法的有效性准则。 展开更多
关键词 模糊C均值 有效性 最佳
在线阅读 下载PDF
一种核模糊C均值聚类算法及其应用 被引量:30
16
作者 康家银 纪志成 龚成龙 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第7期1657-1663,共7页
图像分割在许多医学成像应用中起着重要的作用。本文提出了一种新的用于图像分割的聚类算法。该算法通过利用核距离修改FCM-AWA算法中的目标函数而实现,即用核距离替代FCM-AWA中的欧氏距离,相应的得到核FCM-AWA聚类算法——KAWA-FCM聚... 图像分割在许多医学成像应用中起着重要的作用。本文提出了一种新的用于图像分割的聚类算法。该算法通过利用核距离修改FCM-AWA算法中的目标函数而实现,即用核距离替代FCM-AWA中的欧氏距离,相应的得到核FCM-AWA聚类算法——KAWA-FCM聚类算法。利用该算法进行合成和真实图像分割的实验结果表明,当图像含有噪声时,与FCM-AWA算法相比,HAWA-FCM算法具有更好的性能。此外,基于该算法进行了牙菌斑量化的实验,实验结果表明,相对于利用菌斑指数的量化结果,基于KAWA-FCM的量化结果具有定量、自动和客观等特点。 展开更多
关键词 模糊C均值 模糊 方法 牙菌斑 分割 量化
在线阅读 下载PDF
模糊c-均值算法改进及其对卫星遥感数据聚类的对比 被引量:12
17
作者 哈斯巴干 马建文 +2 位作者 李启青 刘志丽 韩秀珍 《计算机工程》 CAS CSCD 北大核心 2004年第11期14-15,91,共3页
提出的改进的模糊c-均值聚类方法采用基于标准协方差矩阵的Mahalanobis距离,即椭球体聚类方法,这种聚类算法更接近遥感数据散点图的实际情况,从而可以显著提高聚类效果。对北京卫星ASTER数据的聚类分析实验表明,改进的模糊c-均值聚类方... 提出的改进的模糊c-均值聚类方法采用基于标准协方差矩阵的Mahalanobis距离,即椭球体聚类方法,这种聚类算法更接近遥感数据散点图的实际情况,从而可以显著提高聚类效果。对北京卫星ASTER数据的聚类分析实验表明,改进的模糊c-均值聚类方法的聚类效果要优于K-均值聚类方法和常规的模糊c-均值聚类方法。 展开更多
关键词 遥感数据 K-均值 模糊C均值 MAHALANOBIS距离
在线阅读 下载PDF
基于粒子群优化的模糊C-均值聚类算法研究 被引量:23
18
作者 王纵虎 刘志镜 陈东辉 《计算机科学》 CSCD 北大核心 2012年第9期166-169,共4页
针对用模糊C-均值聚类算法选择初始聚类中心敏感及模糊加权指数m对模糊C-均值聚类算法的聚类性能影响较大等问题,利用粒子群优化算法的全局寻优能力强及收敛速度较快的特点,结合模糊C-均值算法提出一种新的模糊聚类算法;采用了一种简单... 针对用模糊C-均值聚类算法选择初始聚类中心敏感及模糊加权指数m对模糊C-均值聚类算法的聚类性能影响较大等问题,利用粒子群优化算法的全局寻优能力强及收敛速度较快的特点,结合模糊C-均值算法提出一种新的模糊聚类算法;采用了一种简单有效的粒子编码方法,将初始聚类中心和模糊加权指数m同时进行粒子群优化搜索,在得到最优适应度的同时,m也收敛到一个稳定的最优解,从而有效地解决了上述问题。算法在人工合成数据集和多个UCI数据集上都取得了较好的效果。 展开更多
关键词 模糊c-均值 粒子群优化 粒子编码 初始中心
在线阅读 下载PDF
模糊C-均值聚类算法的优化 被引量:17
19
作者 熊拥军 刘卫国 欧鹏杰 《计算机工程与应用》 CSCD 北大核心 2015年第11期124-128,共5页
针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本... 针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本点的密度来确定初始聚类中心,避免了初始聚类中心随机选取而产生的聚类结果的不稳定;采用马氏距离计算样本集的相似度,以满足不同度量单位数据的要求。实验结果表明,FCMBMD算法在聚类中心、收敛速度、迭代次数以及准确率等方面具有良好的效果。 展开更多
关键词 模糊c-均值 密度函数 马氏距离 基于密度和马氏距离优化的模糊c-均值(FCMBMD)算法
在线阅读 下载PDF
基于粒子群优化的模糊C-均值聚类改进算法 被引量:18
20
作者 蒲蓬勃 王鸽 刘太安 《计算机工程与设计》 CSCD 北大核心 2008年第16期4277-4279,共3页
针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM。该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从... 针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM。该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从而不用再为得到好的聚类效果而反复选择初值。仿真实验结果表明,提出的模糊聚类算法提高了FCM的搜索能力,具有更好的稳定性和健壮性,优化能力增强,提高了聚类的效率和效果。 展开更多
关键词 全局优化 模糊c-均值算法 粒子群优化算法 粒子
在线阅读 下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部