期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种提高Kernel PCA特征提取性能的核优化算法
1
作者
段祎林
田亚爱
《西安石油大学学报(自然科学版)》
CAS
北大核心
2009年第5期82-85,共4页
基于核的主分量分析(Kernel PCA)能够提取数据的非线性特征,但其性能受核参数的影响非常大.提出了一种新的基于特征空间中非高斯分布估计的核参数优化算法.该方法基于Kernel PCA中最优的参数应能导致特征空间中数据具有高斯分布的思想,...
基于核的主分量分析(Kernel PCA)能够提取数据的非线性特征,但其性能受核参数的影响非常大.提出了一种新的基于特征空间中非高斯分布估计的核参数优化算法.该方法基于Kernel PCA中最优的参数应能导致特征空间中数据具有高斯分布的思想,通过对特征空间中数据的非高斯性结构进行分析,从反面估计其对高斯分布的逼近程度.采用该方法对各种数据进行实验都有很好的效果,表明了该方法的有效性.
展开更多
关键词
基于核的主分量分析
特征子空间
独立
分量
分析
最大熵原则
在线阅读
下载PDF
职称材料
题名
一种提高Kernel PCA特征提取性能的核优化算法
1
作者
段祎林
田亚爱
机构
西安石油大学理学院
出处
《西安石油大学学报(自然科学版)》
CAS
北大核心
2009年第5期82-85,共4页
基金
国家自然科学基金(编号:10674090)资助项目
文摘
基于核的主分量分析(Kernel PCA)能够提取数据的非线性特征,但其性能受核参数的影响非常大.提出了一种新的基于特征空间中非高斯分布估计的核参数优化算法.该方法基于Kernel PCA中最优的参数应能导致特征空间中数据具有高斯分布的思想,通过对特征空间中数据的非高斯性结构进行分析,从反面估计其对高斯分布的逼近程度.采用该方法对各种数据进行实验都有很好的效果,表明了该方法的有效性.
关键词
基于核的主分量分析
特征子空间
独立
分量
分析
最大熵原则
Keywords
Kernel PCA
sub-feature space
ICA
maximum-entropy principle
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种提高Kernel PCA特征提取性能的核优化算法
段祎林
田亚爱
《西安石油大学学报(自然科学版)》
CAS
北大核心
2009
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部