人脸特征蕴含诸多信息,在面部属性和情感分析任务中具有重要价值,而面部特征的多样性和复杂性使人脸分析任务变得困难。针对上述难题,从面部细粒度特征角度出发,提出基于上下文通道注意力机制的人脸属性估计和表情识别(FAER)模型。首先...人脸特征蕴含诸多信息,在面部属性和情感分析任务中具有重要价值,而面部特征的多样性和复杂性使人脸分析任务变得困难。针对上述难题,从面部细粒度特征角度出发,提出基于上下文通道注意力机制的人脸属性估计和表情识别(FAER)模型。首先,构建基于ConvNext的局部特征编码骨干网络,并运用骨干网络编码局部特征的有效性来充分表征人脸局部特征之间的差异性;其次,提出上下文通道注意力(CC Attention)机制,通过动态自适应调整特征通道上的权重信息,表征深度特征的全局和局部特征,从而弥补骨干网络编码全局特征能力的不足;最后,设计不同分类策略,针对人脸属性估计(FAE)和面部表情识别(FER)任务,分别采用不同损失函数组合,以促使模型学习更多的面部细粒度特征。实验结果表明,所提FAER模型在人脸属性数据集CelebA(CelebFaces Attributes)上取得了91.87%的平均准确率,相较于次优模型SwinFace(Swin transformer for Face)高出0.55个百分点;在面部表情数据集RAF-DB和AffectNet上分别取得了91.75%和66.66%的准确率,相较于次优模型TransFER(Transformers for Facial Expression Recognition)分别高出0.84和0.43个百分点。展开更多
针对卫星双向时间频率传递(two-way satellite time and frequency transfer, TWSTFT)存在周日效应、短期稳定度不高的问题,通过引入基于注意力机制的Transformer权值矩阵,利用Vondrak-Cepek组合滤波的方法将中国科学院国家授时中心(Nat...针对卫星双向时间频率传递(two-way satellite time and frequency transfer, TWSTFT)存在周日效应、短期稳定度不高的问题,通过引入基于注意力机制的Transformer权值矩阵,利用Vondrak-Cepek组合滤波的方法将中国科学院国家授时中心(National Time Service Center, NTSC)、德国物理技术研究院(Physikalisch-Technische Bundesanstalt, PTB)之间的TWSTFT和全球定位系统(Global Positioning System, GPS)P3码共视法的时间比对链路进行融合,分析融合前后链路的性能指标并与没有周日效应、短期稳定度高的GPS精密单点定位(GPS precise point positioning, GPS PPP)时间比对参考链路进行比较。结果表明,引入注意力机制权值的Vondrak-Cepek组合滤波融合方法与参考链路GPS PPP的标准差为0.310 9 ns,具有改善TWSTFT周日效应、提升链路整体稳定性的作用。展开更多
文摘人脸特征蕴含诸多信息,在面部属性和情感分析任务中具有重要价值,而面部特征的多样性和复杂性使人脸分析任务变得困难。针对上述难题,从面部细粒度特征角度出发,提出基于上下文通道注意力机制的人脸属性估计和表情识别(FAER)模型。首先,构建基于ConvNext的局部特征编码骨干网络,并运用骨干网络编码局部特征的有效性来充分表征人脸局部特征之间的差异性;其次,提出上下文通道注意力(CC Attention)机制,通过动态自适应调整特征通道上的权重信息,表征深度特征的全局和局部特征,从而弥补骨干网络编码全局特征能力的不足;最后,设计不同分类策略,针对人脸属性估计(FAE)和面部表情识别(FER)任务,分别采用不同损失函数组合,以促使模型学习更多的面部细粒度特征。实验结果表明,所提FAER模型在人脸属性数据集CelebA(CelebFaces Attributes)上取得了91.87%的平均准确率,相较于次优模型SwinFace(Swin transformer for Face)高出0.55个百分点;在面部表情数据集RAF-DB和AffectNet上分别取得了91.75%和66.66%的准确率,相较于次优模型TransFER(Transformers for Facial Expression Recognition)分别高出0.84和0.43个百分点。
文摘针对卫星双向时间频率传递(two-way satellite time and frequency transfer, TWSTFT)存在周日效应、短期稳定度不高的问题,通过引入基于注意力机制的Transformer权值矩阵,利用Vondrak-Cepek组合滤波的方法将中国科学院国家授时中心(National Time Service Center, NTSC)、德国物理技术研究院(Physikalisch-Technische Bundesanstalt, PTB)之间的TWSTFT和全球定位系统(Global Positioning System, GPS)P3码共视法的时间比对链路进行融合,分析融合前后链路的性能指标并与没有周日效应、短期稳定度高的GPS精密单点定位(GPS precise point positioning, GPS PPP)时间比对参考链路进行比较。结果表明,引入注意力机制权值的Vondrak-Cepek组合滤波融合方法与参考链路GPS PPP的标准差为0.310 9 ns,具有改善TWSTFT周日效应、提升链路整体稳定性的作用。