期刊文献+
共找到8,894篇文章
< 1 2 250 >
每页显示 20 50 100
基于上下文通道注意力机制的人脸属性估计与表情识别 被引量:2
1
作者 徐杰 钟勇 +2 位作者 王阳 张昌福 杨观赐 《计算机应用》 北大核心 2025年第1期253-260,共8页
人脸特征蕴含诸多信息,在面部属性和情感分析任务中具有重要价值,而面部特征的多样性和复杂性使人脸分析任务变得困难。针对上述难题,从面部细粒度特征角度出发,提出基于上下文通道注意力机制的人脸属性估计和表情识别(FAER)模型。首先... 人脸特征蕴含诸多信息,在面部属性和情感分析任务中具有重要价值,而面部特征的多样性和复杂性使人脸分析任务变得困难。针对上述难题,从面部细粒度特征角度出发,提出基于上下文通道注意力机制的人脸属性估计和表情识别(FAER)模型。首先,构建基于ConvNext的局部特征编码骨干网络,并运用骨干网络编码局部特征的有效性来充分表征人脸局部特征之间的差异性;其次,提出上下文通道注意力(CC Attention)机制,通过动态自适应调整特征通道上的权重信息,表征深度特征的全局和局部特征,从而弥补骨干网络编码全局特征能力的不足;最后,设计不同分类策略,针对人脸属性估计(FAE)和面部表情识别(FER)任务,分别采用不同损失函数组合,以促使模型学习更多的面部细粒度特征。实验结果表明,所提FAER模型在人脸属性数据集CelebA(CelebFaces Attributes)上取得了91.87%的平均准确率,相较于次优模型SwinFace(Swin transformer for Face)高出0.55个百分点;在面部表情数据集RAF-DB和AffectNet上分别取得了91.75%和66.66%的准确率,相较于次优模型TransFER(Transformers for Facial Expression Recognition)分别高出0.84和0.43个百分点。 展开更多
关键词 人脸属性估计 面部表情识别 注意力机制 细粒度特征 特征差异
在线阅读 下载PDF
基于残差分组卷积神经网络和多级注意力机制的源荷极端场景辨识方法 被引量:1
2
作者 郭红霞 李渊 +2 位作者 陈凌轩 王建学 马骞 《电网技术》 北大核心 2025年第2期459-469,I0019-I0024,共17页
为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方... 为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方法。首先,将风电、光伏和负荷序列进行重塑,并在通道维度上拼接;然后,基于分组卷积和深度残差网络,提取场景的时序特征和源荷场景之间的耦合特征;其次,模型内部嵌入通道注意力机制和多头注意力机制,以赋予重要特征更大的权重,并对场景进行分类;此外,采用改进损失函数解决训练样本中数据集不均衡的问题;最后,基于历史数据集进行验证。验证结果表明,所提方法能够对场景进行有效的分类,可以从历史场景中识别出具有高保供或高消纳风险的源荷极端场景。 展开更多
关键词 极端场景辨识 残差神经网络 分组卷积 注意力机制 源荷不确定性
在线阅读 下载PDF
VMD-小波去噪与双线性ResNet结合坐标注意力机制的水声信号调制识别方法 被引量:1
3
作者 周锋 韦少帅 乔钢 《哈尔滨工程大学学报》 北大核心 2025年第7期1357-1366,共10页
针对复杂的水声环境噪声干扰导致提取信号特征不明显、水声通信调制信号类内差异大、类间相似导致调制识别准确率低的问题,本文提出一种基于去噪与改进的ResNet网络调制识别方法。运用变分模态分解与小波相结合的去噪方法,保留了低相关... 针对复杂的水声环境噪声干扰导致提取信号特征不明显、水声通信调制信号类内差异大、类间相似导致调制识别准确率低的问题,本文提出一种基于去噪与改进的ResNet网络调制识别方法。运用变分模态分解与小波相结合的去噪方法,保留了低相关性模态分量含有的有效信息;运用双线性ResNet18使网络具备捕获区分性强的局部信息;引入坐标注意力机制,使网络不仅能关注通道信息也能关注图像的空间信息。仿真结果表明:本文降噪方法相关系数更高、均方根误差均降低了20%;以0 dB条件为例,本文改进网络准确率相比于ResNet提升了8%,7种调制信号都达到了95%以上,调相调制准确率也达到了90%。 展开更多
关键词 水声通信 调制识别 残差网络 去噪 双线性模型 注意力机制 神经网络 变分模态
在线阅读 下载PDF
基于注意力机制的特征融合推荐模型 被引量:1
4
作者 马汉达 李腾飞 《计算机工程与科学》 北大核心 2025年第5期902-911,共10页
针对目前推荐系统难以获得特征信息,缺乏有效的方法来表示特征信息的权重的问题,提出了一种基于注意力机制与特征融合的推荐模型FFADeepCF_SPS。首先,针对特征表示不够充分的问题,使用因子分解机融合特征,将特征从一维扩展到高维,从而... 针对目前推荐系统难以获得特征信息,缺乏有效的方法来表示特征信息的权重的问题,提出了一种基于注意力机制与特征融合的推荐模型FFADeepCF_SPS。首先,针对特征表示不够充分的问题,使用因子分解机融合特征,将特征从一维扩展到高维,从而获得特征的低阶表示,然后使用深度神经网络学习高阶特征,并通过一个全连接层将2种特征组合起来,以获得所需的特征表示;其次,针对单头注意力机制过度倾斜权重的问题,使用将输入切分成多个单头分别计算其注意力权重的多头注意力机制,再经由线性变换将各结果进行拼接,获得最终的输出;最后,结合上述2点构建了基于注意力机制与特征融合的推荐模型。为了验证模型的有效性,在4个公开数据集上与基线模型GMF、DeepCF_SPS和CNN-BiLSTM进行了对比实验以及消融实验。实验结果表明,在不同规模的数据集上,所提模型与基线模型相比在MSE、RMSE、MAE评价指标上表现出的性能均更优。 展开更多
关键词 注意力机制 特征融合 推荐模型 评分预测
在线阅读 下载PDF
基于通道注意力机制增强DGNN的外骨骼机器人步态相位预测 被引量:1
5
作者 颜建军 许赢家 +2 位作者 林越 金理 江金林 《华东理工大学学报(自然科学版)》 北大核心 2025年第1期110-118,共9页
利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,... 利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,采集人体下肢的行走步态数据并构建人体下肢的骨架模型;之后,建立了基于CA-DGNN步态相位的预测模型,提取人体步态相位的运动特征,并基于当前时刻数据预测未来时刻的步态相位;最后,探讨了滑动窗口大小对算法性能的影响。本文提高了外骨骼机器人步态相位预测的准确性和鲁棒性,为此方向研究提供了一种新的思路和方法。 展开更多
关键词 步态相位预测 惯性传感器 骨架 时空图卷积网络 通道注意力机制
在线阅读 下载PDF
基于注意力机制的高光谱图像降维在纸质文物霉斑识别的研究
6
作者 汤斌 贺渝龙 +6 位作者 唐欢 龙邹荣 王建旭 谭博文 覃丹 罗希玲 赵明富 《光谱学与光谱分析》 SCIE EI CAS 北大核心 2025年第1期246-255,共10页
纸质文物作为文物传承的重要工具,用于记录不同时期人类历史及人文风貌,其在保存过程中极易受到霉菌等微生物的侵害。霉菌会加速纤维素的降解,在纸张表面生成霉斑,并且散落的孢子会随空气流动大范围传播,增加其他纸质文物发生霉变的风... 纸质文物作为文物传承的重要工具,用于记录不同时期人类历史及人文风貌,其在保存过程中极易受到霉菌等微生物的侵害。霉菌会加速纤维素的降解,在纸张表面生成霉斑,并且散落的孢子会随空气流动大范围传播,增加其他纸质文物发生霉变的风险。因此,定期对纸质文物进行霉斑检测对了解纸质文物现状和纸质文物修复至关重要。高光谱成像技术是一种非接触性、非破坏性的检测技术,能同时获得空间数据和光谱数据,与计算机技术结合可以实现纸质文物的大批次实时无损检测。针对黑曲霉这一广泛出现的霉菌,提出一种基于注意力机制的高光谱数据降维方法,通过采集其高光谱数据,实现了高光谱冗余数据的自适应预处理。采集了来自重庆中国三峡博物馆提供的20份纸质文物黑曲霉霉斑样本,使用ENVI软件分析得出在413~855 nm波段范围内,黑曲霉霉斑感染区域和健康区域的平均光谱曲线,平均反射率差异明显;在855~1021 nm波段范围内,黑曲霉霉斑感染区域和墨迹区域的平均光谱曲线,平均反射率差异明显。文中将所提出方法与传统主成分分析和独立成分分析预处理方法分别处理原始高光谱数据,并将结果在经典U-Net、SegNet、DeepLabV3+和PSPNet四个语义分割网络上进行了对比。结果表明,该算法预处理的数据在U-Net和SegNet经典网络中有明显优势,相较于主成分分析法和独立成分分析法,霉斑识别精度取得了较大提升达到89.49%和88.46%,验证了本文所提出算法的有效性,为文物保护领域提供有效的支撑和新的思路。 展开更多
关键词 高光谱数据预处理 霉斑识别 纸质文物 注意力机制 图像分割
在线阅读 下载PDF
基于Vondrak-Cepek组合滤波和注意力机制加权的时间比对融合算法
7
作者 刘强 孙浩冉 +1 位作者 胡邓华 张爽 《系统工程与电子技术》 北大核心 2025年第2期673-679,共7页
针对卫星双向时间频率传递(two-way satellite time and frequency transfer, TWSTFT)存在周日效应、短期稳定度不高的问题,通过引入基于注意力机制的Transformer权值矩阵,利用Vondrak-Cepek组合滤波的方法将中国科学院国家授时中心(Nat... 针对卫星双向时间频率传递(two-way satellite time and frequency transfer, TWSTFT)存在周日效应、短期稳定度不高的问题,通过引入基于注意力机制的Transformer权值矩阵,利用Vondrak-Cepek组合滤波的方法将中国科学院国家授时中心(National Time Service Center, NTSC)、德国物理技术研究院(Physikalisch-Technische Bundesanstalt, PTB)之间的TWSTFT和全球定位系统(Global Positioning System, GPS)P3码共视法的时间比对链路进行融合,分析融合前后链路的性能指标并与没有周日效应、短期稳定度高的GPS精密单点定位(GPS precise point positioning, GPS PPP)时间比对参考链路进行比较。结果表明,引入注意力机制权值的Vondrak-Cepek组合滤波融合方法与参考链路GPS PPP的标准差为0.310 9 ns,具有改善TWSTFT周日效应、提升链路整体稳定性的作用。 展开更多
关键词 Vondrak-Cepek组合滤波 注意力机制 时间比对 数据融合
在线阅读 下载PDF
基于孪生网络和交叉注意力机制的空域和JPEG图像隐写分析
8
作者 张倩倩 李浩 +2 位作者 张祎 马媛媛 罗向阳 《计算机学报》 北大核心 2025年第6期1305-1326,共22页
近年来,深度学习在图像隐写分析任务中表现出了优越的性能。然而,此类方法在捕获图像中微弱的隐写噪声时,往往会因下采样过程中大量关键细节信息的丢失,导致在检测空域和JPEG隐写图像时难以同时实现高检测准确率。为此,本文基于孪生神... 近年来,深度学习在图像隐写分析任务中表现出了优越的性能。然而,此类方法在捕获图像中微弱的隐写噪声时,往往会因下采样过程中大量关键细节信息的丢失,导致在检测空域和JPEG隐写图像时难以同时实现高检测准确率。为此,本文基于孪生神经网络对图像进行分区域细粒度学习,同时利用交叉注意力机制进一步增强模型全局信息感知能力,提出一种跨通道交叉注意力增强的隐写分析方法(CES-Net)。首先,采用孪生神经网络作为主干网对图像进行分区域学习,以细致地感知空域和JPEG图像的像素信息和微弱的隐写噪声,同时,设计了多样化的高通滤波器和多层卷积作为网络预处理层来获取丰富且高质量的隐写噪声残差;接着,改进了特征提取部分,提出了跨通道交叉注意力网络,使模型提取到更多因隐写嵌入对图像像素相关性造成扰动的隐写特征,用于基于秘密噪声残差等弱信息的隐写图像分类任务;最后,融合子网络学习到的不同区域图像的分类特征,并输入全连接层组成的分类模块对载体和载密图像进行分类,提升检测效果。在隐写和隐写分析领域常用的图像数据集BOSSBase-1.01和BOWs2上进行了大量实验,结果表明,CES-Net方法与现有方法相比,对于空域和JPEG图像的多种主流隐写算法均能达到目前最优的检测准确率,其中,对多种空域隐写算法(WOW、S-UNIWARD和HILL)在不同嵌入比率下生成的载密图像,检测准确率最高分别提升1.27%~25.61%、2.1%~21.73%和1.69%~23.46%;对JPEG图像自适应隐写算法J-UNIWARD在不同嵌入比率下生成的载密图像,CES-Net方法对两种质量因子(QF=75和QF=85)的JPEG图像隐写检测准确率最高分别提升2.34%和2.06%。 展开更多
关键词 隐写分析 隐写 孪生网络 交叉注意力机制 信息隐藏
在线阅读 下载PDF
基于注意力机制和特征融合的井下轻量级人员检测方法
9
作者 王帅 杨伟 +2 位作者 李宇翔 吴佳奇 杨维 《煤炭科学技术》 北大核心 2025年第4期383-392,共10页
煤矿井下环境复杂,安全隐患较多,人员检测是保障煤矿安全生产和建设智慧矿山的重要内容。常用的检测算法不仅参数量大,对设备算力要求高,而且在煤矿低照度环境下的应用效果不理想。针对上述问题,基于YOLOv5提出一种用于煤矿井下的轻量... 煤矿井下环境复杂,安全隐患较多,人员检测是保障煤矿安全生产和建设智慧矿山的重要内容。常用的检测算法不仅参数量大,对设备算力要求高,而且在煤矿低照度环境下的应用效果不理想。针对上述问题,基于YOLOv5提出一种用于煤矿井下的轻量级人员检测方法YOLOv5-CWG。首先,在骨干网络中嵌入坐标注意力机制(Coordinate Attention)自适应的调整特征图中每个通道的权重,增强特征的表达能力,提高模型在低照度、粉尘影响严重以及对比度低的不利条件下对待检测人员目标的关注度,更精确地定位和识别人员目标。其次,通过加权多尺度特征融合模块(Weighted multiscale feature fusion moule)引入可学习的权重赋予特征层不同的关注度,使网络有效融合浅层位置特征和高层语义信息,增强模型的信息提取能力,更好地区分目标区域和背景噪声,从而提高模型的抗干扰能力。增加1个P2层的检测头,提升较小目标的检测和定位精度。引入SIoU损失函数代替原损失函数加快模型收敛。最后,引入Ghost模块优化骨干网络,可以在不损失模型性能的前提下降低模型的参数量,提高检测速度,使得模型更容易部署在资源受限的设备上。结果表明,提出的YOLOv5-CWG算法在煤矿井下人员检测数据集(UMPDD)上的mAP达到了97.5%,相较于YOLOv5s提高了7.3%,计算量减少了27.6%,FPS提高了6.3。所提算法显著提高了煤矿井下人员检测精度,有效解决了亮度低和光照不均引起的人员检测困难问题。 展开更多
关键词 人员检测 YOLOv5 注意力机制 轻量化 特征融合
在线阅读 下载PDF
基于时空特征和注意力机制的伪造检测方法
10
作者 姬莉霞 徐冲 +2 位作者 杜云龙 陈允峰 张晗 《郑州大学学报(理学版)》 北大核心 2025年第5期9-15,共7页
针对伪造检测中存在的特征冗余以及缺乏判别性等问题,提出一种基于时空特征和注意力机制的人脸伪造检测方法,旨在从时域和空域上挖掘图像的伪造线索,由帧间差异信息作为出发点进行伪造检测。首先,利用空间注意力模块,使模型关注到真实... 针对伪造检测中存在的特征冗余以及缺乏判别性等问题,提出一种基于时空特征和注意力机制的人脸伪造检测方法,旨在从时域和空域上挖掘图像的伪造线索,由帧间差异信息作为出发点进行伪造检测。首先,利用空间注意力模块,使模型关注到真实场景下易产生伪造的脸部区域。其次,利用时间注意力模块,对视频中人脸运动幅度变化更大、判别性更强的帧给予更高的权重。在FaceForensics++数据集上进行实验,结果表明,所提方法的曲线下面积(AUC)指标在低质量和高质量视频上分别达到89.04%和98.81%。此外,在Celeb-DF数据集上的测试结果也显示了所提方法具有良好的泛化性能。 展开更多
关键词 伪造检测 时空特征 帧间差异 注意力机制
在线阅读 下载PDF
基于注意力机制的CNN-BiLSTM过闸流量预测模型
11
作者 何立新 沈正华 +1 位作者 张峥 雷晓辉 《水电能源科学》 北大核心 2025年第5期135-138,共4页
在明渠调水工程中,精确掌握过闸流量对于提升渠道调控效率、保障输水系统安全等问题意义重大。为提高过闸流量预测精度,提出一种基于注意力机制,融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的过闸流量预测模型。以洺河渡槽节制... 在明渠调水工程中,精确掌握过闸流量对于提升渠道调控效率、保障输水系统安全等问题意义重大。为提高过闸流量预测精度,提出一种基于注意力机制,融合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的过闸流量预测模型。以洺河渡槽节制闸为例,选取其1年时间尺度的实际数据为模型输入,模型首先将输入数据标准化,再利用CNN提取特征信息,经过BiLSTM捕获序列数据中的前后向依赖关系,最后通过注意力机制评估信息的重要程度,对特征参数进行加权处理,实现对过闸流量的预测。结果表明,所建模型相比于传统的BP-NN、SVR、LSTM等预测模型具有更好的预测结果,模型的平均绝对误差、平均绝对百分比误差、均方根误差和决定系数分别为3.682、0.018、4.661、0.983,可为工程实践提供参考。 展开更多
关键词 过闸流量预测 BiLSTM 注意力机制 神经网络
在线阅读 下载PDF
基于多尺度卷积神经网络和双注意力机制的V2G充电桩开关管开路故障信息融合诊断
12
作者 徐玉珍 邹中华 +3 位作者 刘宇龙 曾梓洋 文云 金涛 《中国电机工程学报》 北大核心 2025年第8期2992-3002,I0012,共12页
随着电动汽车的普及,充电基础设施需求急剧上升,迫切需要对充电桩进行维护和故障诊断。为有效利用不同尺度下的充电桩故障信号特征,该文提出一种基于多尺度卷积神经网络和双注意力机制的V2G(vehicle-to-grid)充电桩开关管开路故障信息... 随着电动汽车的普及,充电基础设施需求急剧上升,迫切需要对充电桩进行维护和故障诊断。为有效利用不同尺度下的充电桩故障信号特征,该文提出一种基于多尺度卷积神经网络和双注意力机制的V2G(vehicle-to-grid)充电桩开关管开路故障信息融合诊断方法。该方法基于卷积神经网络,引入自注意力机制突出故障信号中的重要特征。同时,使用最大池化层和平均池化层处理故障信号,提供不同尺度的互补信息;此外,引入通道注意力机制关注不同通道特征,可提高模型性能;最后,采用Softmax分类器进行分类和识别。仿真结果表明,该方法在多个方面优于其他对比算法,包括收敛速度、抑制过拟合以及诊断准确率等,并且表现出卓越的抗噪性能,能够有效应对充电桩故障信号中的噪声。在实际测试中,该方法实现了开关管开路故障位置的准确定位,其准确率达96.67%。结果为充电桩开关管开路故障的诊断提供了可行的解决方案。 展开更多
关键词 充电桩 故障诊断 信息融合 深度学习 注意力机制
在线阅读 下载PDF
融合注意力机制与改进ResNet50的服装图像属性预测方法
13
作者 游小荣 李淑芳 邵红燕 《现代纺织技术》 北大核心 2025年第1期58-64,共7页
为了解决人工标注服装图像属性效率低下的问题,提出了一种融合注意力机制与改进ResNet50的服装图像属性预测方法。首先对传统多标签分类方法中的模型进行了改进,改进后的方法能更充分利用任务之间的相关性,并减少数据稀缺问题带来的影响... 为了解决人工标注服装图像属性效率低下的问题,提出了一种融合注意力机制与改进ResNet50的服装图像属性预测方法。首先对传统多标签分类方法中的模型进行了改进,改进后的方法能更充分利用任务之间的相关性,并减少数据稀缺问题带来的影响;接着引入CBAM注意力机制,用于捕捉服装属性上的细节特征。结果表明:在未引入注意力机制的情况下,基于改进ResNet50的方法在多项评价指标上均优于传统多标签分类方法,准确率提高了25.96%;与ResNet34、EfficientNet_V2、VGG16模型相比,ResNet50模型在服装图像属性预测方面整体表现更佳;引入CBAM注意力机制后,基于改进ResNet50的方法的准确率再提高了1.72%。所提的融合注意力机制与改进ResNet50的服装图像属性预测方法,能够有效预测服装图像属性,为实现服装图像属性的自动化标注提供了新的思路。 展开更多
关键词 服装图像 属性预测 注意力机制 ResNet50 深度学习
在线阅读 下载PDF
基于融合双注意力机制的野生菌图像识别方法
14
作者 王江晴 马春 +2 位作者 莫海芳 帖军 田娟娟 《中国农机化学报》 北大核心 2025年第6期70-76,F0003,共8页
针对目前深度神经网络模型在野生菌识别任务中存在参数量过大导致在移动端部署难的问题,提出一种基于融合双注意力机制的BE—EfficientNet方法。采用轻量化模型EfficientNetB0作为基准模型,将BAM与ECA的融合双注意力模块BE替换Efficient... 针对目前深度神经网络模型在野生菌识别任务中存在参数量过大导致在移动端部署难的问题,提出一种基于融合双注意力机制的BE—EfficientNet方法。采用轻量化模型EfficientNetB0作为基准模型,将BAM与ECA的融合双注意力模块BE替换EfficientNetB0核心模块MBConv中的SENet,使得模型不仅获取通道特征信息,还获取空间特征信息;同时引入Adam优化器,实现学习率自适应调节,提高分类精度。试验结果表明,改进后的BE—EfficientNet模型较基准模型EfficientNetB0准确率提高2.9%,参数量为4.40 MiB。此外,将提出的融合双注意力机制BE应用到VGG16、ResNet50、MobileNet V2、GoogLeNet和ShuffleNet V2模型上进行野生菌识别,在准确率上分别提高0.5%、0.8%、0.6%、0.5%和1.0%,表明双注意力机制BE具有一定的通用性。该方法可为在移动端部署野生菌识别提供新的方案。 展开更多
关键词 野生菌 图像识别 深度神经网络 注意力机制 Adam优化器
在线阅读 下载PDF
基于动态融合注意力机制的电力负荷缺失数据填充模型
15
作者 赵冬 李亚瑞 +1 位作者 王文相 宋伟 《郑州大学学报(工学版)》 北大核心 2025年第2期111-118,共8页
为了提高电力负荷数据的缺失值填充精度,保障后续数据分析与应用的高效进行,首先,提出一种基于动态融合注意力机制的填充模型(DFAIM),该模型由注意力机制模块和动态加权融合模块构成,通过注意力机制模块的两种不同注意力机制挖掘特征与... 为了提高电力负荷数据的缺失值填充精度,保障后续数据分析与应用的高效进行,首先,提出一种基于动态融合注意力机制的填充模型(DFAIM),该模型由注意力机制模块和动态加权融合模块构成,通过注意力机制模块的两种不同注意力机制挖掘特征与时间戳之间的深层关联;其次,通过动态加权融合模块将可学习的权重赋予注意力机制模块的两个输出以得到特征表示;最后,利用特征表示来替换缺失位置的值,从而得到准确的填充结果。使用纽约市某地区的气象及负荷数据集及UCI电力负荷数据集对提出的模型进行验证,实验结果表明:相较于统计学、机器学习和深度学习填充模型,DFAIM在评价指标MAE、RMSE和MRE上均具有一定优势。 展开更多
关键词 缺失值填充 注意力机制 电力负荷 时序特征
在线阅读 下载PDF
基于多重注意力机制的图像雨滴去除方法
16
作者 陈羽中 林闽沪 +1 位作者 陈友昆 牛玉贞 《计算机辅助设计与图形学学报》 北大核心 2025年第5期894-904,共11页
图像雨滴去除任务的目标是对于给定的雨滴图像去除其镜头上遮挡的附着雨滴,还原出真实的干净图像,其在计算机视觉下游任务中有着至关重要的作用.由于已有的图像雨滴去除方法没有考虑雨滴所具有的空间位置局部性和尺度多样性,雨滴去除效... 图像雨滴去除任务的目标是对于给定的雨滴图像去除其镜头上遮挡的附着雨滴,还原出真实的干净图像,其在计算机视觉下游任务中有着至关重要的作用.由于已有的图像雨滴去除方法没有考虑雨滴所具有的空间位置局部性和尺度多样性,雨滴去除效果不理想.为缓解上述问题,提出一种基于多重注意力机制的图像雨滴去除方法.首先,为了适应雨滴的空间位置局部性和尺度多样性,提出结合多尺度特征提取模块和多重注意力模块构建编码器-解码器架构,其中多重注意力模块融合了像素、通道和空间注意力,能够自适应地匹配雨滴的空间位置局部性.此外,设计了一种迭代式图像特征融合模块,在融合解码器特征和雨滴图像得到初步去雨图像后,采用初步去雨图像加强解码器特征,得到进一步的细化特征,再融合初步去雨图像和细化特征得到最终去雨图像.在雨滴图像测试集Raindrop上实验结果表明,与其他方法相比,所提方法能够有效地去除图像中的雨滴,进一步提升雨滴去除的性能,比对比方法中最优的方法在PSNR指标上提升了0.25 dB. 展开更多
关键词 图像雨滴去除 注意力机制 多尺度特征 特征融合
在线阅读 下载PDF
双线性自注意力机制CAN总线入侵检测方法研究
17
作者 陈彦彬 刘桂雄 《电子测量技术》 北大核心 2025年第2期122-130,共9页
控制器局域网络(CAN)总线广泛应用于工业数据采集、车联网等领域,对其安全入侵检测非常重要。为全面提升检测方法性能,提出一种双线性自注意力机制CAN总线入侵检测方法,首先基于堆叠集成思想利用DNN、CNN和LSTM模型提取深度学习层特征;... 控制器局域网络(CAN)总线广泛应用于工业数据采集、车联网等领域,对其安全入侵检测非常重要。为全面提升检测方法性能,提出一种双线性自注意力机制CAN总线入侵检测方法,首先基于堆叠集成思想利用DNN、CNN和LSTM模型提取深度学习层特征;随后通过双线性层分别提取自注意力机制Transformer与FNet特征,再将其与深度学习层特征残差连接融合;最后通过全连接层入侵检测预测,体现高准确率、检测率和良好泛化性特点。在Car_Hacking公开数据集上实验表明,准确率、精确率、召回率、F1值和AUC值分别达0.951、0.996、0.997、0.960和0.984,且随着训练轮数增加其准确率、损失值误差分别保持在5%、10%以内,本文方法优于其他比较方法。应用于物联网实验装置评估结果显示,本文方法在异常攻击识别检测率达99.23%,对于提高测控系统安全性能具有重要推广价值。 展开更多
关键词 入侵检测系统 控制区域网络CAN 注意力机制 FNet
在线阅读 下载PDF
基于位置感应卷积与注意力机制的钢材缺陷检测
18
作者 解妙霞 程照中 +2 位作者 李嘉乐 李玲 贺宁 《湖南大学学报(自然科学版)》 北大核心 2025年第4期135-148,共14页
为了提高钢材缺陷检测精度,提出一种基于YOLOv5s的缺陷检测算法YOLOv5sFNCE.首先,在骨干特征提取网络中加入新型NAMAttention注意力机制,提高对目标的感知和区分能力;并提出新型的C3-Faster,通过减小内存访问和冗余计算更有效地提取特征... 为了提高钢材缺陷检测精度,提出一种基于YOLOv5s的缺陷检测算法YOLOv5sFNCE.首先,在骨干特征提取网络中加入新型NAMAttention注意力机制,提高对目标的感知和区分能力;并提出新型的C3-Faster,通过减小内存访问和冗余计算更有效地提取特征;在特征融合网络和输出端引入位置卷积CoordConvs,增强目标的语义感知能力和全局感知能力;最后,引入新的损失函数Focal-EIoU,以加快收敛速度,提高回归精度.实验结果表明,YOLOv5sFNCE算法在钢材表面缺陷数据集上的均值平均精度达到了75.1%,比原始YOLOv5s提高了1.7个百分点,检测速度则提升了20.5%,证明了该算法在钢材缺陷检测中能够有效提升检测速度和检测精度. 展开更多
关键词 目标检测 YOLOv5 位置感应 损失函数 注意力机制 钢材缺陷
在线阅读 下载PDF
基于变分模态滤波和注意力机制的重载机器人铣削系统颤振辨识方法
19
作者 梁志强 陈司晨 +7 位作者 杜宇超 刘宝隆 高子瑞 乐毅 肖玉斌 郑浩然 仇天阳 刘志兵 《中国机械工程》 北大核心 2025年第5期1018-1027,1073,共11页
提出了一种定参变分模态滤波、包络滤波和注意力机制网络辨识相结合的重载机器人铣削系统颤振辨识方法。首先,根据变分模态滤波理论,通过合适地优选二次惩罚项实现对目标高频非颤振信号分量的剔除;然后,为快速辨识当前的加工状态,从信... 提出了一种定参变分模态滤波、包络滤波和注意力机制网络辨识相结合的重载机器人铣削系统颤振辨识方法。首先,根据变分模态滤波理论,通过合适地优选二次惩罚项实现对目标高频非颤振信号分量的剔除;然后,为快速辨识当前的加工状态,从信号时域分布出发,结合频域在时域上的映射规律,采用包络滤波方法实现低频主轴转速相关信号分量的剔除;最后,构建基于注意力机制的网络辨识模型,对预处理后的多时序短时信号片段进行分类以实现加工状态辨识,并开展重载机器人铣削系统加工验证实验。实验分析结果表明,通过剔除高频非颤振信号和低频主轴转速相关信号分量,再生颤振辨识准确度得到了进一步提高,辨识准确度可达98.75%。通过与其他辨识方法对比,所提出的重载机器人铣削系统颤振辨识方法可以有效地识别重载机器人铣削系统加工过程中的再生颤振,为后续重载机器人铣削系统颤振在线抑制提供技术支撑。 展开更多
关键词 机器人铣削 颤振辨识 变分模态滤波 注意力机制
在线阅读 下载PDF
基于Res2Net注意力机制网络智能检测CT肺动脉成像急性肺动脉栓塞
20
作者 李曼 蒋德攀 +5 位作者 王麦林 李艳若 张晗宇 王颖 张岚 黄婷婷 《中国医学影像学杂志》 北大核心 2025年第4期356-361,369,共7页
目的基于Res2Net注意力机制网络实现CT肺动脉成像急性肺动脉栓塞(APE)的智能检测。资料与方法回顾性收集2015年2月—2023年5月河南中医药大学第一附属医院疑似APE行CT肺动脉成像并确诊为APE的患者。按照7∶2∶1将数据随机分为训练集、... 目的基于Res2Net注意力机制网络实现CT肺动脉成像急性肺动脉栓塞(APE)的智能检测。资料与方法回顾性收集2015年2月—2023年5月河南中医药大学第一附属医院疑似APE行CT肺动脉成像并确诊为APE的患者。按照7∶2∶1将数据随机分为训练集、验证集和测试集。基于Res2Net网络框架,结合多孔空间金字塔池化和注意力机制模块训练模型,对模型进行五折交叉内部验证;在测试集上采用受试者工作特征曲线下面积、敏感度、特异度评估模型的诊断效能;同时采用戴斯相似系数、精确率、交集比并集(IOU)评估模型的分割效能并绘制相应曲线。比较该模型与经典的U-Net模型及CE-Net模型的效能。结果最终纳入303例APE患者,训练集212例,验证集61例,测试集30例。模型的曲线下面积为0.95,敏感度为0.90,特异度为1.00;戴斯相似系数为0.86,精确率为0.90,Pos-IOU为0.78,Neg-IOU为1.00。参数曲线图及雷达图显示Res2Net注意力机制网络多项参数均优于U-Net及CE-Net模型。分割对比的可视化结果显示Res2Net注意力机制网络对肺动脉栓子的分割精准度更高。结论Res2Net注意力机制网络模型对APE具有良好的检测性能。 展开更多
关键词 肺栓塞 CT肺动脉成像 体层摄影术 螺旋计算机 深度学习 Res2Net 注意力机制
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部