针对计算机兵棋推演数据的特点,提出了一种基于密度的快速聚类算法—基于密度的快速空间聚类算法(quick density based spatial clustering of applications with noise,QDBSCAN),目的是通过聚类检测孤立点,快速定位地面部队兵力部署上...针对计算机兵棋推演数据的特点,提出了一种基于密度的快速聚类算法—基于密度的快速空间聚类算法(quick density based spatial clustering of applications with noise,QDBSCAN),目的是通过聚类检测孤立点,快速定位地面部队兵力部署上的缺陷。QDBSCAN算法在基于密度的空间聚类算法(density based spatial cluste-ring of applications with noise,DBSCAN)算法的基础上做了相关改进:在邻近度度量上提出了最短可行路径的概念,使聚类更符合计算机兵棋的规则;动态设置密度参数;采用提出的代表对象选择方法来减少对对象邻域的判断次数;按区域对数据进行分组以缩小聚类规模。实验表明,QDBSCAN算法的性能在数据规模较大的情况下,明显优于DBSCAN算法。展开更多
对基于密度的分布式聚类算法DBDC(density based distributed clustering)进行改进,提出了一种基于密度的分布式聚类算法DBDC*.该算法在局部筛选代表点时结合贝叶斯信息准则BIC,得到少量精准反映局部站点数据分布的BIC核心点,有效降低...对基于密度的分布式聚类算法DBDC(density based distributed clustering)进行改进,提出了一种基于密度的分布式聚类算法DBDC*.该算法在局部筛选代表点时结合贝叶斯信息准则BIC,得到少量精准反映局部站点数据分布的BIC核心点,有效降低了分布式聚类过程中的数据通信量,全局聚类时综合考虑了各站点数据的分布情况.实验结果表明,算法DBDC*的效率优于DBDC,聚类效果好.展开更多
针对数据密集型计算环境下数据具有海量、分布、异构、高速变化等特点,分析传统的基于密度的分布式聚类(Density Base Distributed Clustering,DBDC)算法,借助MapReduce编程模型,提出一种新的分布式聚类算法,采用局部和全局的方式处理...针对数据密集型计算环境下数据具有海量、分布、异构、高速变化等特点,分析传统的基于密度的分布式聚类(Density Base Distributed Clustering,DBDC)算法,借助MapReduce编程模型,提出一种新的分布式聚类算法,采用局部和全局的方式处理海量、异构数据,解决具有以上特点的数据密集型计算环境下数据的分析挖掘问题。得出算法的复杂度为O((nlog2n)/p),实验验证在数据量与节点数变化时算法具有较高的稳定性和可伸缩性,与原算法对比该算法具有较高的准确度。展开更多
为了从移动终端位置数据中精准识别居民职住地,提出了一种基于时空约束密度聚类的职住地识别方法。首先,利用基于K-means的DBSCAN(density-based spatial clustering of applications with noise)时空驻点聚类过程将居民多天的原始轨迹...为了从移动终端位置数据中精准识别居民职住地,提出了一种基于时空约束密度聚类的职住地识别方法。首先,利用基于K-means的DBSCAN(density-based spatial clustering of applications with noise)时空驻点聚类过程将居民多天的原始轨迹点分成不同的时空驻点簇;然后,利用基于速度阈值的停留点簇和移动点簇识别过程将居民的每一个时空驻点簇区分为停留点簇或移动点簇;接着,利用基于K近距离的DBSCAN重要停留点聚类过程将居民的停留点分成不同的重要停留点簇;最后,利用基于KD-tree优化的KNN(K-nearest neighbor)职住地识别过程将居民的每个重要停留点识别为工作地、居住地、职住同一区域或兴趣地点区域。实验结果表明,该方法的每个过程都是合理有效的,并且最终的职住地识别效果要优于时间阈值法、累加时间法和信息熵法。展开更多
针对传统雷达信号识别方法对重点目标识别的针对性、时效性不强的问题,提出一种基于聚类和时序相关的重点雷达信号实时识别方法。首先,依据具有噪声的基于密度的聚类(density-based spatial clustering of application with noise,DBSC...针对传统雷达信号识别方法对重点目标识别的针对性、时效性不强的问题,提出一种基于聚类和时序相关的重点雷达信号实时识别方法。首先,依据具有噪声的基于密度的聚类(density-based spatial clustering of application with noise,DBSCAN)算法对侦获信号的脉冲描述字进行分选;而后,利用分选所得脉冲的时序特征与重点目标信号脉冲重复间隔(pulse repetition interval,PRI)生成仿真信号;最后,计算仿真信号的互相关函数,基于相关度判断PRI参数是否匹配。仿真实验表明:所提方法明显提升了对重点目标信号的识别时效,能够应对存在噪声干扰和信号交叠的复杂信号环境,对局部脉冲参数丢失不敏感。展开更多
数据清洗、特征选择和预测模型建立是基于数据采集与监视控制系统(supervisory control and data acquisition,SCADA)数据,实现风电机组异常状态预警不可缺少的重要环节。先结合孤立森林(isolation forest,iForest)和基于密度的空间聚类...数据清洗、特征选择和预测模型建立是基于数据采集与监视控制系统(supervisory control and data acquisition,SCADA)数据,实现风电机组异常状态预警不可缺少的重要环节。先结合孤立森林(isolation forest,iForest)和基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法对SCADA数据异常点进行有效清洗,并采用随机森林算法(random forests,RF)与Person相关系数法优选模型输入参数;再进而基于Optuna优化的类别提升树(categorical boosting,CATBoost)算法,建立风电机组正常工况齿轮箱油池温度的预测模型;然后采用滑动窗方法,构建状态评价指标,并使用区间估计理论确定油温异常状态判别的临界阈值;实现油温异常预警;最后,采用某风电机组SCADA系统油温异常的真实历史故障数据进行检验,验证了该方法的有效性。展开更多
针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBS...针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBSCAN)等方法对发动机数据进行了清洗,获取平稳飞行状态下滑油量数据。使用最小二乘法对滑油量进行拟合,得到了滑油消耗率,平均拟合优度达到了0.86。在此基础上,利用多层感知器(Multi-layer perception,MLP)建立了滑油消耗率与飞行状态参数之间的关系,预测结果与实际值的平均绝对百分比误差为1.15%。本文提出的方法能够满足实际工程需求,为评估航空发动机滑油系统的健康状况提供了可靠参考。展开更多
文摘针对计算机兵棋推演数据的特点,提出了一种基于密度的快速聚类算法—基于密度的快速空间聚类算法(quick density based spatial clustering of applications with noise,QDBSCAN),目的是通过聚类检测孤立点,快速定位地面部队兵力部署上的缺陷。QDBSCAN算法在基于密度的空间聚类算法(density based spatial cluste-ring of applications with noise,DBSCAN)算法的基础上做了相关改进:在邻近度度量上提出了最短可行路径的概念,使聚类更符合计算机兵棋的规则;动态设置密度参数;采用提出的代表对象选择方法来减少对对象邻域的判断次数;按区域对数据进行分组以缩小聚类规模。实验表明,QDBSCAN算法的性能在数据规模较大的情况下,明显优于DBSCAN算法。
文摘对基于密度的分布式聚类算法DBDC(density based distributed clustering)进行改进,提出了一种基于密度的分布式聚类算法DBDC*.该算法在局部筛选代表点时结合贝叶斯信息准则BIC,得到少量精准反映局部站点数据分布的BIC核心点,有效降低了分布式聚类过程中的数据通信量,全局聚类时综合考虑了各站点数据的分布情况.实验结果表明,算法DBDC*的效率优于DBDC,聚类效果好.
文摘针对数据密集型计算环境下数据具有海量、分布、异构、高速变化等特点,分析传统的基于密度的分布式聚类(Density Base Distributed Clustering,DBDC)算法,借助MapReduce编程模型,提出一种新的分布式聚类算法,采用局部和全局的方式处理海量、异构数据,解决具有以上特点的数据密集型计算环境下数据的分析挖掘问题。得出算法的复杂度为O((nlog2n)/p),实验验证在数据量与节点数变化时算法具有较高的稳定性和可伸缩性,与原算法对比该算法具有较高的准确度。
文摘为了从移动终端位置数据中精准识别居民职住地,提出了一种基于时空约束密度聚类的职住地识别方法。首先,利用基于K-means的DBSCAN(density-based spatial clustering of applications with noise)时空驻点聚类过程将居民多天的原始轨迹点分成不同的时空驻点簇;然后,利用基于速度阈值的停留点簇和移动点簇识别过程将居民的每一个时空驻点簇区分为停留点簇或移动点簇;接着,利用基于K近距离的DBSCAN重要停留点聚类过程将居民的停留点分成不同的重要停留点簇;最后,利用基于KD-tree优化的KNN(K-nearest neighbor)职住地识别过程将居民的每个重要停留点识别为工作地、居住地、职住同一区域或兴趣地点区域。实验结果表明,该方法的每个过程都是合理有效的,并且最终的职住地识别效果要优于时间阈值法、累加时间法和信息熵法。
文摘针对传统雷达信号识别方法对重点目标识别的针对性、时效性不强的问题,提出一种基于聚类和时序相关的重点雷达信号实时识别方法。首先,依据具有噪声的基于密度的聚类(density-based spatial clustering of application with noise,DBSCAN)算法对侦获信号的脉冲描述字进行分选;而后,利用分选所得脉冲的时序特征与重点目标信号脉冲重复间隔(pulse repetition interval,PRI)生成仿真信号;最后,计算仿真信号的互相关函数,基于相关度判断PRI参数是否匹配。仿真实验表明:所提方法明显提升了对重点目标信号的识别时效,能够应对存在噪声干扰和信号交叠的复杂信号环境,对局部脉冲参数丢失不敏感。
文摘数据清洗、特征选择和预测模型建立是基于数据采集与监视控制系统(supervisory control and data acquisition,SCADA)数据,实现风电机组异常状态预警不可缺少的重要环节。先结合孤立森林(isolation forest,iForest)和基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法对SCADA数据异常点进行有效清洗,并采用随机森林算法(random forests,RF)与Person相关系数法优选模型输入参数;再进而基于Optuna优化的类别提升树(categorical boosting,CATBoost)算法,建立风电机组正常工况齿轮箱油池温度的预测模型;然后采用滑动窗方法,构建状态评价指标,并使用区间估计理论确定油温异常状态判别的临界阈值;实现油温异常预警;最后,采用某风电机组SCADA系统油温异常的真实历史故障数据进行检验,验证了该方法的有效性。
文摘桥梁结构的模态参数识别作为桥梁健康检测系统中的主要环节之一,参数识别的精确程度直接影响着桥梁健康评估的准确程度。因此,针对现阶段被广泛运用的确定-随机子空间算法(combined determine-stochastic subspace identification,CDSI)存在的不足,需人工参与稳定图中模态的辨识,提出了将基于密度的聚类算法(density-based spatial clustering of application with noise,DBSCAN)嵌入到该识别算法中,以提高模态参数识别的效率。首先简单介绍了CDSI识别算法和DBSCAN聚类的相关原理及定义,其次详细介绍了如何将DBSCAN聚类算法有效地嵌入到CDSI算法中,以实现对稳定图中模态的智能化辨识;最后以某大型斜拉桥为识别对象,并将识别结果与MIDAS有限元软件所得结果作对比,结果表明,所提改进CDSI识别算法能够精确地识别出桥梁结构的固有频率值,且所得模态振型图与理论振型图具有很好的相似性。
文摘针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBSCAN)等方法对发动机数据进行了清洗,获取平稳飞行状态下滑油量数据。使用最小二乘法对滑油量进行拟合,得到了滑油消耗率,平均拟合优度达到了0.86。在此基础上,利用多层感知器(Multi-layer perception,MLP)建立了滑油消耗率与飞行状态参数之间的关系,预测结果与实际值的平均绝对百分比误差为1.15%。本文提出的方法能够满足实际工程需求,为评估航空发动机滑油系统的健康状况提供了可靠参考。