针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBS...针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBSCAN)等方法对发动机数据进行了清洗,获取平稳飞行状态下滑油量数据。使用最小二乘法对滑油量进行拟合,得到了滑油消耗率,平均拟合优度达到了0.86。在此基础上,利用多层感知器(Multi-layer perception,MLP)建立了滑油消耗率与飞行状态参数之间的关系,预测结果与实际值的平均绝对百分比误差为1.15%。本文提出的方法能够满足实际工程需求,为评估航空发动机滑油系统的健康状况提供了可靠参考。展开更多
准确识别岩质高边坡结构面和获取产状统计信息是进行边坡稳定性分析的重要前提。无人机摄影测量技术为解决高边坡结构面准确勘测难题提供了可能,但缺少高效准确的影像后处理方法,且现有研究没有考虑结构面产状信息特征的不确定性,致使...准确识别岩质高边坡结构面和获取产状统计信息是进行边坡稳定性分析的重要前提。无人机摄影测量技术为解决高边坡结构面准确勘测难题提供了可能,但缺少高效准确的影像后处理方法,且现有研究没有考虑结构面产状信息特征的不确定性,致使结构面识别准确性差、效率低。针对该问题,以江西省南昌市某露天矿高边坡为研究背景,提出了融合无人机摄影、后处理算法及统计分析的一体化结构面识别与产状统计信息采集方法。首先,通过Phantom 4 Pro V2.0无人机获取边坡表面影像;其次,利用Context Capture软件进行处理,得到高密度三维点云数据;然后,采用K近邻(KNN)算法中的确定近邻点数量法构建相似点集,采用基于密度的聚类(DBSCAN)算法进行聚类分析,从而实现边坡结构面识别,获得结构面产状信息并进行统计特征分析;最后,通过现场勘测数据进行对比验证。结果表明:该方法能够快速获取完整的高密度点云数据,准确高效地识别岩质高边坡大部分结构面,识别结果与边坡工程现场实际情况基本吻合;该方法可获取高边坡结构面数量、产状信息及其统计特征,大部分结构面倾角和倾向概率分布与实测数据拟合较好,为高边坡裂隙网络模型构建及稳定性分析提供了重要数据来源。展开更多
大部分人的日常生活通常只集中在少数几个特定的地点(例如家、办公室、食堂、餐厅、咖啡店及健身房等)。这几个地点与人们的行为和日程息息相关,被称为有意义的地点。地点学习是一种新兴技术,利用手机传感器收集到的数据自动学习对用户...大部分人的日常生活通常只集中在少数几个特定的地点(例如家、办公室、食堂、餐厅、咖啡店及健身房等)。这几个地点与人们的行为和日程息息相关,被称为有意义的地点。地点学习是一种新兴技术,利用手机传感器收集到的数据自动学习对用户有意义的地点。所学习的地点信息可以用于大量基于地点的移动应用和互联网服务,也可以帮助推断用户侧写。详细介绍了一种自动地点学习方法——利用手机自动收集的无线信号的信号强度指示符(Received Signal Strength Indicators,RSSI),采用基于密度的聚类算法,自动学习对用户有意义的地点,生成地点的无线指纹。此外,还讨论了该自动地点学习方法在实验室和现实场景中的工作性能,建立模型并确定最佳参数,用于提供最佳的地点正确识别率。展开更多
文摘桥梁结构的模态参数识别作为桥梁健康检测系统中的主要环节之一,参数识别的精确程度直接影响着桥梁健康评估的准确程度。因此,针对现阶段被广泛运用的确定-随机子空间算法(combined determine-stochastic subspace identification,CDSI)存在的不足,需人工参与稳定图中模态的辨识,提出了将基于密度的聚类算法(density-based spatial clustering of application with noise,DBSCAN)嵌入到该识别算法中,以提高模态参数识别的效率。首先简单介绍了CDSI识别算法和DBSCAN聚类的相关原理及定义,其次详细介绍了如何将DBSCAN聚类算法有效地嵌入到CDSI算法中,以实现对稳定图中模态的智能化辨识;最后以某大型斜拉桥为识别对象,并将识别结果与MIDAS有限元软件所得结果作对比,结果表明,所提改进CDSI识别算法能够精确地识别出桥梁结构的固有频率值,且所得模态振型图与理论振型图具有很好的相似性。
文摘针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBSCAN)等方法对发动机数据进行了清洗,获取平稳飞行状态下滑油量数据。使用最小二乘法对滑油量进行拟合,得到了滑油消耗率,平均拟合优度达到了0.86。在此基础上,利用多层感知器(Multi-layer perception,MLP)建立了滑油消耗率与飞行状态参数之间的关系,预测结果与实际值的平均绝对百分比误差为1.15%。本文提出的方法能够满足实际工程需求,为评估航空发动机滑油系统的健康状况提供了可靠参考。
文摘准确识别岩质高边坡结构面和获取产状统计信息是进行边坡稳定性分析的重要前提。无人机摄影测量技术为解决高边坡结构面准确勘测难题提供了可能,但缺少高效准确的影像后处理方法,且现有研究没有考虑结构面产状信息特征的不确定性,致使结构面识别准确性差、效率低。针对该问题,以江西省南昌市某露天矿高边坡为研究背景,提出了融合无人机摄影、后处理算法及统计分析的一体化结构面识别与产状统计信息采集方法。首先,通过Phantom 4 Pro V2.0无人机获取边坡表面影像;其次,利用Context Capture软件进行处理,得到高密度三维点云数据;然后,采用K近邻(KNN)算法中的确定近邻点数量法构建相似点集,采用基于密度的聚类(DBSCAN)算法进行聚类分析,从而实现边坡结构面识别,获得结构面产状信息并进行统计特征分析;最后,通过现场勘测数据进行对比验证。结果表明:该方法能够快速获取完整的高密度点云数据,准确高效地识别岩质高边坡大部分结构面,识别结果与边坡工程现场实际情况基本吻合;该方法可获取高边坡结构面数量、产状信息及其统计特征,大部分结构面倾角和倾向概率分布与实测数据拟合较好,为高边坡裂隙网络模型构建及稳定性分析提供了重要数据来源。
文摘大部分人的日常生活通常只集中在少数几个特定的地点(例如家、办公室、食堂、餐厅、咖啡店及健身房等)。这几个地点与人们的行为和日程息息相关,被称为有意义的地点。地点学习是一种新兴技术,利用手机传感器收集到的数据自动学习对用户有意义的地点。所学习的地点信息可以用于大量基于地点的移动应用和互联网服务,也可以帮助推断用户侧写。详细介绍了一种自动地点学习方法——利用手机自动收集的无线信号的信号强度指示符(Received Signal Strength Indicators,RSSI),采用基于密度的聚类算法,自动学习对用户有意义的地点,生成地点的无线指纹。此外,还讨论了该自动地点学习方法在实验室和现实场景中的工作性能,建立模型并确定最佳参数,用于提供最佳的地点正确识别率。