期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
邻域平衡密度聚类算法 被引量:22
1
作者 武佳薇 李雄飞 +1 位作者 孙涛 李巍 《计算机研究与发展》 EI CSCD 北大核心 2010年第6期1044-1052,共9页
聚类是数据挖掘领域的一项重要分析手段.在分析核心对象与其邻域对象的分布特征后,引入对象的投影点,对象的邻域平衡、平衡核心对象、边界稀疏对象等概念.提出一种新的基于密度的聚类算法bDBSCAN(balance-DBSCAN).算法将核心对象邻域中... 聚类是数据挖掘领域的一项重要分析手段.在分析核心对象与其邻域对象的分布特征后,引入对象的投影点,对象的邻域平衡、平衡核心对象、边界稀疏对象等概念.提出一种新的基于密度的聚类算法bDBSCAN(balance-DBSCAN).算法将核心对象邻域中的对象投影,进行向量单位化,考察核心对象的邻域平衡性,将与平衡核心对象平衡密度可达的对象聚成一个簇.理论分析和实验结果表明,算法可以处理任意形状的簇,有效地排除边界稀疏对象这类噪声,并且可以解决高维数据聚类边界区分不明显、噪声对象多等问题,提高了聚类精度.算法的时间复杂度与DBSCAN近似. 展开更多
关键词 投影点 邻域平衡 平衡核心对象 边界稀疏对象 基于密度算法
在线阅读 下载PDF
基于密度的计算机兵棋推演数据快速聚类算法 被引量:5
2
作者 石崇林 张茂军 +2 位作者 吴琳 唐宇波 景民 《系统工程与电子技术》 EI CSCD 北大核心 2011年第11期2428-2433,共6页
针对计算机兵棋推演数据的特点,提出了一种基于密度的快速聚类算法—基于密度的快速空间聚类算法(quick density based spatial clustering of applications with noise,QDBSCAN),目的是通过聚类检测孤立点,快速定位地面部队兵力部署上... 针对计算机兵棋推演数据的特点,提出了一种基于密度的快速聚类算法—基于密度的快速空间聚类算法(quick density based spatial clustering of applications with noise,QDBSCAN),目的是通过聚类检测孤立点,快速定位地面部队兵力部署上的缺陷。QDBSCAN算法在基于密度的空间聚类算法(density based spatial cluste-ring of applications with noise,DBSCAN)算法的基础上做了相关改进:在邻近度度量上提出了最短可行路径的概念,使聚类更符合计算机兵棋的规则;动态设置密度参数;采用提出的代表对象选择方法来减少对对象邻域的判断次数;按区域对数据进行分组以缩小聚类规模。实验表明,QDBSCAN算法的性能在数据规模较大的情况下,明显优于DBSCAN算法。 展开更多
关键词 数据挖掘 兵棋推演数据 基于密度算法 最短可行路径
在线阅读 下载PDF
基于视觉原理的密度聚类算法 被引量:5
3
作者 王伟东 芦金婵 张讲社 《工程数学学报》 CSCD 北大核心 2005年第2期349-352,共4页
在模式识别、图像处理、聚类分析等领域,人的眼睛具有快速有效地组织并发现物体内部结构的自然能力,本文就是在模拟人类视觉系统这一功能的基础上,结合基于密度的聚类方法提出了一种新的聚类算法,该算法具有对初始化参数不敏感、能发现... 在模式识别、图像处理、聚类分析等领域,人的眼睛具有快速有效地组织并发现物体内部结构的自然能力,本文就是在模拟人类视觉系统这一功能的基础上,结合基于密度的聚类方法提出了一种新的聚类算法,该算法具有对初始化参数不敏感、能发现任意形状的聚类及能找到最优聚类等优点。 展开更多
关键词 视觉系统 分析 基于密度算法
在线阅读 下载PDF
一种基于密度的分布式聚类算法 被引量:11
4
作者 郑苗苗 吉根林 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期536-543,共8页
对基于密度的分布式聚类算法DBDC(density based distributed clustering)进行改进,提出了一种基于密度的分布式聚类算法DBDC*.该算法在局部筛选代表点时结合贝叶斯信息准则BIC,得到少量精准反映局部站点数据分布的BIC核心点,有效降低... 对基于密度的分布式聚类算法DBDC(density based distributed clustering)进行改进,提出了一种基于密度的分布式聚类算法DBDC*.该算法在局部筛选代表点时结合贝叶斯信息准则BIC,得到少量精准反映局部站点数据分布的BIC核心点,有效降低了分布式聚类过程中的数据通信量,全局聚类时综合考虑了各站点数据的分布情况.实验结果表明,算法DBDC*的效率优于DBDC,聚类效果好. 展开更多
关键词 分布式 基于密度算法(DBSCAN) 分布式算法(DBDC)
在线阅读 下载PDF
数据挖掘中聚类算法比较及在武警网络中的应用研究
5
作者 田杰 周晓娟 吕建新 《现代电子技术》 2008年第8期115-117,共3页
聚类算法是数据挖掘的核心技术,根据评价聚类算法优劣的几个标准,对数据挖掘中常用聚类算法做了比较分析,根据各自特点,加以改进,并应用于武警部队数据挖掘项目中。通过运用改进型K-means算法,取得了较好的挖掘结果,为进一步信息的智能... 聚类算法是数据挖掘的核心技术,根据评价聚类算法优劣的几个标准,对数据挖掘中常用聚类算法做了比较分析,根据各自特点,加以改进,并应用于武警部队数据挖掘项目中。通过运用改进型K-means算法,取得了较好的挖掘结果,为进一步信息的智能化检索、信息的过滤、分拣提供依据。 展开更多
关键词 数据挖掘 代表点算法 基于密度算法 K-MEANS算法 指挥自动化
在线阅读 下载PDF
一种面向数据密集型计算环境的聚类算法 被引量:3
6
作者 钱鑫 张龙波 +2 位作者 田爱奎 邓齐志 汪金苗 《济南大学学报(自然科学版)》 CAS 北大核心 2013年第1期11-15,共5页
针对数据密集型计算环境下数据具有海量、分布、异构、高速变化等特点,分析传统的基于密度的分布式聚类(Density Base Distributed Clustering,DBDC)算法,借助MapReduce编程模型,提出一种新的分布式聚类算法,采用局部和全局的方式处理... 针对数据密集型计算环境下数据具有海量、分布、异构、高速变化等特点,分析传统的基于密度的分布式聚类(Density Base Distributed Clustering,DBDC)算法,借助MapReduce编程模型,提出一种新的分布式聚类算法,采用局部和全局的方式处理海量、异构数据,解决具有以上特点的数据密集型计算环境下数据的分析挖掘问题。得出算法的复杂度为O((nlog2n)/p),实验验证在数据量与节点数变化时算法具有较高的稳定性和可伸缩性,与原算法对比该算法具有较高的准确度。 展开更多
关键词 数据密集型计算 分布式 基于密度的分布式算法
在线阅读 下载PDF
基于时空约束密度聚类的职住地识别方法 被引量:2
7
作者 苗登逢 肖跃雷 《计算机应用研究》 CSCD 北大核心 2022年第6期1779-1784,共6页
为了从移动终端位置数据中精准识别居民职住地,提出了一种基于时空约束密度聚类的职住地识别方法。首先,利用基于K-means的DBSCAN(density-based spatial clustering of applications with noise)时空驻点聚类过程将居民多天的原始轨迹... 为了从移动终端位置数据中精准识别居民职住地,提出了一种基于时空约束密度聚类的职住地识别方法。首先,利用基于K-means的DBSCAN(density-based spatial clustering of applications with noise)时空驻点聚类过程将居民多天的原始轨迹点分成不同的时空驻点簇;然后,利用基于速度阈值的停留点簇和移动点簇识别过程将居民的每一个时空驻点簇区分为停留点簇或移动点簇;接着,利用基于K近距离的DBSCAN重要停留点聚类过程将居民的停留点分成不同的重要停留点簇;最后,利用基于KD-tree优化的KNN(K-nearest neighbor)职住地识别过程将居民的每个重要停留点识别为工作地、居住地、职住同一区域或兴趣地点区域。实验结果表明,该方法的每个过程都是合理有效的,并且最终的职住地识别效果要优于时间阈值法、累加时间法和信息熵法。 展开更多
关键词 密度 职住地识别 K-均值 基于密度的噪声空间算法 KD-TREE K-近邻
在线阅读 下载PDF
改进的基于距离的关联规则聚类 被引量:3
8
作者 田宏 王亚伟 王毅 《计算机工程与设计》 CSCD 北大核心 2009年第5期1204-1206,共3页
关联规则挖掘会产生大量的规则,为了从这些规则中识别出有用的信息,需要对规则进行有效的分类组织。现有的规则聚类方法往往直接计算规则间的距离,忽略了项与项之间的联系,不能精确得出规则间的距离。提出一种改进的规则间距离的度量方... 关联规则挖掘会产生大量的规则,为了从这些规则中识别出有用的信息,需要对规则进行有效的分类组织。现有的规则聚类方法往往直接计算规则间的距离,忽略了项与项之间的联系,不能精确得出规则间的距离。提出一种改进的规则间距离的度量方法,首先计算项间的距离,其次计算相集间的距离和规则间的距离,最后基于此距离利用DBSCAN算法对关联规则进行聚类。实验结果表明,此方法是有效可行的,并能准确发现孤立规则。 展开更多
关键词 关联规则 项集 距离 基于密度算法
在线阅读 下载PDF
基于传感器聚类数据挖掘的物联网智慧医疗模型设计 被引量:10
9
作者 黄辰 潘永才 +3 位作者 李可维 黄本雄 皮健夫 付勇前 《传感器与微系统》 CSCD 北大核心 2014年第4期76-79,共4页
现代智慧医疗需要操作简洁、反应迅速,能够提供智慧诊断的信息化平台,提出基于物联网无线传感器技术的智慧医疗模型。系统利用附着在患者身上的各类传感器采集到的生理信息数据,采用基于密度的带有噪声的空间聚类(DBSCAN)算法的数据分... 现代智慧医疗需要操作简洁、反应迅速,能够提供智慧诊断的信息化平台,提出基于物联网无线传感器技术的智慧医疗模型。系统利用附着在患者身上的各类传感器采集到的生理信息数据,采用基于密度的带有噪声的空间聚类(DBSCAN)算法的数据分析方法,用非线性映射把患者的生理信息数据转换到高纬度的特征空间,对变换后的矢量数据进行聚类分析,从而提升聚类结果并有效辅助医务人员进行诊断。 展开更多
关键词 物联网 智慧医疗 基于密度的带有噪声的空间算法
在线阅读 下载PDF
基于聚类和流量传播图的P2P流量识别方法 被引量:3
10
作者 苏阳阳 孙冬璞 +1 位作者 李丹丹 孙广路 《计算机应用研究》 CSCD 北大核心 2019年第11期3448-3451,3455,共5页
为有效监管网络,快速精确识别P2P流量,通过分析P2P网络流量中节点与节点、节点与链路之间的交互和行为特征,将聚类方法与流量传播图方法相结合,提出了一种基于网络行为特征的P2P流量识别方法。该方法首先通过采集网络流的包级和流级统... 为有效监管网络,快速精确识别P2P流量,通过分析P2P网络流量中节点与节点、节点与链路之间的交互和行为特征,将聚类方法与流量传播图方法相结合,提出了一种基于网络行为特征的P2P流量识别方法。该方法首先通过采集网络流的包级和流级统计特征对不同种类的网络应用的流量进行聚类,然后利用流量传播图对P2P流量进行识别。实验结果表明,提出的方法在骨干网络数据上能够有效识别P2P网络应用流量,F 1-measure达到95%以上。 展开更多
关键词 P2P流量识别 流量行为特征 流量传播图 基于密度带噪声的空间算法
在线阅读 下载PDF
基于聚类和时序相关的重点雷达信号快速识别 被引量:8
11
作者 张怡霄 郭文普 +2 位作者 康凯 姚云龙 王攀 《系统工程与电子技术》 EI CSCD 北大核心 2020年第3期597-602,共6页
针对传统雷达信号识别方法对重点目标识别的针对性、时效性不强的问题,提出一种基于聚类和时序相关的重点雷达信号实时识别方法。首先,依据具有噪声的基于密度的聚类(density-based spatial clustering of application with noise,DBSC... 针对传统雷达信号识别方法对重点目标识别的针对性、时效性不强的问题,提出一种基于聚类和时序相关的重点雷达信号实时识别方法。首先,依据具有噪声的基于密度的聚类(density-based spatial clustering of application with noise,DBSCAN)算法对侦获信号的脉冲描述字进行分选;而后,利用分选所得脉冲的时序特征与重点目标信号脉冲重复间隔(pulse repetition interval,PRI)生成仿真信号;最后,计算仿真信号的互相关函数,基于相关度判断PRI参数是否匹配。仿真实验表明:所提方法明显提升了对重点目标信号的识别时效,能够应对存在噪声干扰和信号交叠的复杂信号环境,对局部脉冲参数丢失不敏感。 展开更多
关键词 雷达信号识别 基于密度的具有噪声的算法 脉冲描述字 时序相关
在线阅读 下载PDF
基于iForest-DBSCAN-RF与优化CATBoost的风电机组齿轮箱油温异常预警
12
作者 马良玉 韩立凯 翟亮亮 《电力科学与技术学报》 北大核心 2025年第4期193-204,共12页
数据清洗、特征选择和预测模型建立是基于数据采集与监视控制系统(supervisory control and data acquisition,SCADA)数据,实现风电机组异常状态预警不可缺少的重要环节。先结合孤立森林(isolation forest,iForest)和基于密度的空间聚类... 数据清洗、特征选择和预测模型建立是基于数据采集与监视控制系统(supervisory control and data acquisition,SCADA)数据,实现风电机组异常状态预警不可缺少的重要环节。先结合孤立森林(isolation forest,iForest)和基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法对SCADA数据异常点进行有效清洗,并采用随机森林算法(random forests,RF)与Person相关系数法优选模型输入参数;再进而基于Optuna优化的类别提升树(categorical boosting,CATBoost)算法,建立风电机组正常工况齿轮箱油池温度的预测模型;然后采用滑动窗方法,构建状态评价指标,并使用区间估计理论确定油温异常状态判别的临界阈值;实现油温异常预警;最后,采用某风电机组SCADA系统油温异常的真实历史故障数据进行检验,验证了该方法的有效性。 展开更多
关键词 风电机组 故障预警 孤立森林 基于密度的空间算法 随机森林
在线阅读 下载PDF
基于SURF的高密度人群计数方法 被引量:11
13
作者 梁荣华 刘向东 +2 位作者 马祥音 王子仁 宋明黎 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第12期1568-1575,共8页
为了解决在高密度人流或视场开阔环境下人群计数准确率低的问题,提出一种基于SURF的高密度人群计数方法.首先采用最小生成树改进了传统的基于密度的聚类算法,使其最小搜索域自适应聚类数据的分布;在此基础上实现运动人群的SURF特征点分... 为了解决在高密度人流或视场开阔环境下人群计数准确率低的问题,提出一种基于SURF的高密度人群计数方法.首先采用最小生成树改进了传统的基于密度的聚类算法,使其最小搜索域自适应聚类数据的分布;在此基础上实现运动人群的SURF特征点分类,并以此构建运动人群的特征向量,用支持向量回归机实现了对高密度人群的数量统计.实验结果表明,该方法对高密度人群的计数有较高的准确率和鲁棒性. 展开更多
关键词 密度人群计数 SURF 最小生成树 基于密度算法 支持向量回归机
在线阅读 下载PDF
DBSCAN算法中参数的自适应确定 被引量:39
14
作者 李宗林 罗可 《计算机工程与应用》 CSCD 北大核心 2016年第3期70-73,80,共5页
DBSCAN算法需要人为确定Eps和min Pts两个参数,导致聚类结果的准确度直接取决于用户对参数的选择,因此提出一种新的参数确定方法,采用非参数核密度估计理论分析数据样本的分布特征来自动确定Eps和min Pts参数,避免了聚类过程的人工干预... DBSCAN算法需要人为确定Eps和min Pts两个参数,导致聚类结果的准确度直接取决于用户对参数的选择,因此提出一种新的参数确定方法,采用非参数核密度估计理论分析数据样本的分布特征来自动确定Eps和min Pts参数,避免了聚类过程的人工干预,实现聚类过程的自动化。理论分析和实验结果表明,该方法能够选择合理的Eps和min Pts参数,并得到了较高准确度的聚类结果。 展开更多
关键词 一种经典的基于密度算法(DBSCAN) 密度估计 自适应
在线阅读 下载PDF
一种基于k-均值的DBSCAN算法参数动态选择方法 被引量:23
15
作者 王兆丰 单甘霖 《计算机工程与应用》 CSCD 北大核心 2017年第3期80-86,共7页
为解决DBSCAN聚类算法的Eps及MinPts参数选择问题,提出一种领域无关的参数动态选择方法。首先,基于k-均值算法对数据集进行初步聚类,聚类中采用最大最小距离方法确定初始聚类中心。其次,针对k-均值聚类结果,计算统计各聚类中样本间距离... 为解决DBSCAN聚类算法的Eps及MinPts参数选择问题,提出一种领域无关的参数动态选择方法。首先,基于k-均值算法对数据集进行初步聚类,聚类中采用最大最小距离方法确定初始聚类中心。其次,针对k-均值聚类结果,计算统计各聚类中样本间距离的分布情况,选择使得具有最大样本对数的距离值作为对应类的Eps值,并通过Eps获得MinPts值。最后,对DBSCAN算法进行改进,使其可根据当前核心点所属k-均值聚类对应的Eps对其运行值进行自适应调整。将上述思想运用于未知协议条件下的比特流聚类分析,结果表明,在无需用户指定Eps及MinPts的条件下,即可获得满意的聚类结果,提高了算法的适用性和准确率。 展开更多
关键词 一种经典的基于密度算法(DBSCAN) 参数选择 K-均值算法 未知协议
在线阅读 下载PDF
基于DBSCAN算法的改进确定-随机子空间模态参数识别算法 被引量:8
16
作者 单豪良 陈永高 孙泽阳 《振动与冲击》 EI CSCD 北大核心 2022年第11期156-163,共8页
桥梁结构的模态参数识别作为桥梁健康检测系统中的主要环节之一,参数识别的精确程度直接影响着桥梁健康评估的准确程度。因此,针对现阶段被广泛运用的确定-随机子空间算法(combined determine-stochastic subspace identification,CDSI... 桥梁结构的模态参数识别作为桥梁健康检测系统中的主要环节之一,参数识别的精确程度直接影响着桥梁健康评估的准确程度。因此,针对现阶段被广泛运用的确定-随机子空间算法(combined determine-stochastic subspace identification,CDSI)存在的不足,需人工参与稳定图中模态的辨识,提出了将基于密度的聚类算法(density-based spatial clustering of application with noise,DBSCAN)嵌入到该识别算法中,以提高模态参数识别的效率。首先简单介绍了CDSI识别算法和DBSCAN聚类的相关原理及定义,其次详细介绍了如何将DBSCAN聚类算法有效地嵌入到CDSI算法中,以实现对稳定图中模态的智能化辨识;最后以某大型斜拉桥为识别对象,并将识别结果与MIDAS有限元软件所得结果作对比,结果表明,所提改进CDSI识别算法能够精确地识别出桥梁结构的固有频率值,且所得模态振型图与理论振型图具有很好的相似性。 展开更多
关键词 桥梁结构 确定-随机子空间算法 基于密度算法 稳定图 固有频率值 模态振型
在线阅读 下载PDF
基于DDTW距离与DBSCAN算法的户变关系识别方法 被引量:32
17
作者 刘苏 黄纯 +2 位作者 侯帅帅 黄世付 李建奇 《电力系统自动化》 EI CSCD 北大核心 2021年第18期71-77,共7页
针对低压配电台区拓扑结构中户变关系缺失或异常的问题,提出了一种基于导数动态时间弯曲(DDTW)算法与基于密度的有噪空间聚类应用(DBSCAN)算法的户变关系识别方法。首先,采用DDTW算法对台区配电变压器(以下简称台变)低压侧电压和用户电... 针对低压配电台区拓扑结构中户变关系缺失或异常的问题,提出了一种基于导数动态时间弯曲(DDTW)算法与基于密度的有噪空间聚类应用(DBSCAN)算法的户变关系识别方法。首先,采用DDTW算法对台区配电变压器(以下简称台变)低压侧电压和用户电压的时间序列进行相似性分析。然后,根据DDTW距离对台变和用户进行聚类得到户变关系的概率性结果,减小聚类算法参数对聚类结果的影响。该方法能够对时间间隔不同、不等长的电压时间序列进行分析,对电压数据缺失或异常不敏感,且不需要人为设定阈值,户变关系识别准确性高。最后,通过实例分析验证了所提方法的有效性。 展开更多
关键词 配电网 低压拓扑 户变关系 导数动态时间弯曲(DDTW)距离 基于密度的有噪空间应用(DBSCAN)算法
在线阅读 下载PDF
基于激光雷达与惯导融合的掘进机定位方法
18
作者 刘京 魏志强 +1 位作者 蔡春蒙 刘洋 《工矿自动化》 北大核心 2025年第3期78-85,95,共9页
煤矿掘进机精准定位是智能掘进的基础,但井下低光照、高粉尘等恶劣作业环境导致单一定位方法精度低、稳定性差。为提高掘进机在恶劣环境中的定位精度,提出了一种基于误差状态卡尔曼滤波(ESKF)的激光雷达与惯导融合的掘进机定位方法。首... 煤矿掘进机精准定位是智能掘进的基础,但井下低光照、高粉尘等恶劣作业环境导致单一定位方法精度低、稳定性差。为提高掘进机在恶劣环境中的定位精度,提出了一种基于误差状态卡尔曼滤波(ESKF)的激光雷达与惯导融合的掘进机定位方法。首先,以悬挂在巷道顶部的球靶中心为巷道坐标系原点,设计基于密度的噪声鲁棒空间聚类(DBSCAN)算法和基于形状特征的球靶点云提取算法,解决传统依靠反射强度区分球靶的方法在粉尘堆积时易失效的问题,结合坐标变换方法构建雷达位置测量系统以获得融合定位基准。其次,利用惯导积分得到掘进机的位置和姿态信息。然后,基于一阶高斯马尔可夫过程进行误差状态建模,采用误差状态卡尔曼滤波算法融合雷达和惯导的输出,得到掘进机在巷道中的融合定位结果,并将融合定位结果反馈给惯导,以校正其累计误差,从而获得精准的定位结果。定位试验结果表明:在掘进机静止状态下,不同位置和姿态角下雷达定位系统的位置误差小于10 cm,惯导定位系统的位置误差小于70 cm;在掘进机运动状态下,融合系统的位置误差为5.8 cm,相比雷达系统的位置误差降低了12.1%。基于激光雷达与惯导融合的掘进机定位方法可以在复杂掘进工况中满足煤矿掘进机自动截割时的定位需求。 展开更多
关键词 掘进机定位 激光雷达 惯导 误差状态卡尔曼滤波 基于密度的噪声鲁棒空间算法 球靶
在线阅读 下载PDF
航空发动机滑油消耗率计算与预测方法 被引量:1
19
作者 张振生 蔡景 +1 位作者 张瑞 张航源 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第4期668-676,共9页
针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBS... 针对航空发动机滑油箱油量测量值易受多个参数影响导致滑油消耗率难以计算和预测的问题,提出了一种改进的滑油量数据提取规则和滑油消耗率预测方法。基于密度聚类算法(Density-based spatial clustering of applications with noise,DBSCAN)等方法对发动机数据进行了清洗,获取平稳飞行状态下滑油量数据。使用最小二乘法对滑油量进行拟合,得到了滑油消耗率,平均拟合优度达到了0.86。在此基础上,利用多层感知器(Multi-layer perception,MLP)建立了滑油消耗率与飞行状态参数之间的关系,预测结果与实际值的平均绝对百分比误差为1.15%。本文提出的方法能够满足实际工程需求,为评估航空发动机滑油系统的健康状况提供了可靠参考。 展开更多
关键词 航空发动机 滑油消耗率 基于密度聚类算法 多层感知器
在线阅读 下载PDF
基于激光雷达回波信号的雾天车道线快速检测
20
作者 陈琼 李小玲 《中国测试》 CAS 北大核心 2024年第11期120-128,共9页
当前主要通过深度神经网络模型提取路面车道线,并设计能见度检测网络,根据车道线可见长度检测路面车道线。但是,在雾天,基于深度分割神经网络设计编码解码结构非相关因素过多,无法通过其提取车道线特征图,无法准确检测图像坐标系下可见... 当前主要通过深度神经网络模型提取路面车道线,并设计能见度检测网络,根据车道线可见长度检测路面车道线。但是,在雾天,基于深度分割神经网络设计编码解码结构非相关因素过多,无法通过其提取车道线特征图,无法准确检测图像坐标系下可见车道线的高度。针对雾天驾驶时的视觉障碍问题,以激光雷达技术为支撑,提出雾天车道线快速检测方法。根据激光雷达回波信号中每个回波脉冲宽度级的扫描点数,采用最小类内方差算法,阈值分割路面与车道线扫描点,由3σ准则分离出车道线的种子点后,基于高斯核函数加权搜索的生长准则,经区域生长得到完整的车道线种子点集。基于密度的空间聚类算法二次聚类获取的车道线种子点集,得到车道线的识别结果。以识别结果为基础,建立抛物线模型,结合随机采样一致性算法和最小二乘法,依据拟合分值迭代取得最优模型,通过拟合完成车道线检测。实验结果表明:该方法屏蔽雾天干扰引起的非相关因素,清晰检测出雾天环境中的多种车道线。在雾天环境车道线检测中,交并比高于0.95,F1值高于96%,可以满足准确性和实时性需求,为雾天驾驶提供有效的解决方案。 展开更多
关键词 雾天环境 激光雷达 回波信号脉冲宽度 基于密度的空间算法 抛物线 车道线检测
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部