期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
邻域平衡密度聚类算法 被引量:22
1
作者 武佳薇 李雄飞 +1 位作者 孙涛 李巍 《计算机研究与发展》 EI CSCD 北大核心 2010年第6期1044-1052,共9页
聚类是数据挖掘领域的一项重要分析手段.在分析核心对象与其邻域对象的分布特征后,引入对象的投影点,对象的邻域平衡、平衡核心对象、边界稀疏对象等概念.提出一种新的基于密度的聚类算法bDBSCAN(balance-DBSCAN).算法将核心对象邻域中... 聚类是数据挖掘领域的一项重要分析手段.在分析核心对象与其邻域对象的分布特征后,引入对象的投影点,对象的邻域平衡、平衡核心对象、边界稀疏对象等概念.提出一种新的基于密度的聚类算法bDBSCAN(balance-DBSCAN).算法将核心对象邻域中的对象投影,进行向量单位化,考察核心对象的邻域平衡性,将与平衡核心对象平衡密度可达的对象聚成一个簇.理论分析和实验结果表明,算法可以处理任意形状的簇,有效地排除边界稀疏对象这类噪声,并且可以解决高维数据聚类边界区分不明显、噪声对象多等问题,提高了聚类精度.算法的时间复杂度与DBSCAN近似. 展开更多
关键词 投影点 邻域平衡 平衡核心对象 边界稀疏对象 基于密度的聚类算法
在线阅读 下载PDF
基于密度的计算机兵棋推演数据快速聚类算法 被引量:5
2
作者 石崇林 张茂军 +2 位作者 吴琳 唐宇波 景民 《系统工程与电子技术》 EI CSCD 北大核心 2011年第11期2428-2433,共6页
针对计算机兵棋推演数据的特点,提出了一种基于密度的快速聚类算法—基于密度的快速空间聚类算法(quick density based spatial clustering of applications with noise,QDBSCAN),目的是通过聚类检测孤立点,快速定位地面部队兵力部署上... 针对计算机兵棋推演数据的特点,提出了一种基于密度的快速聚类算法—基于密度的快速空间聚类算法(quick density based spatial clustering of applications with noise,QDBSCAN),目的是通过聚类检测孤立点,快速定位地面部队兵力部署上的缺陷。QDBSCAN算法在基于密度的空间聚类算法(density based spatial cluste-ring of applications with noise,DBSCAN)算法的基础上做了相关改进:在邻近度度量上提出了最短可行路径的概念,使聚类更符合计算机兵棋的规则;动态设置密度参数;采用提出的代表对象选择方法来减少对对象邻域的判断次数;按区域对数据进行分组以缩小聚类规模。实验表明,QDBSCAN算法的性能在数据规模较大的情况下,明显优于DBSCAN算法。 展开更多
关键词 数据挖掘 兵棋推演数据 基于密度的聚类算法 最短可行路径
在线阅读 下载PDF
一种基于密度的分布式聚类算法 被引量:11
3
作者 郑苗苗 吉根林 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期536-543,共8页
对基于密度的分布式聚类算法DBDC(density based distributed clustering)进行改进,提出了一种基于密度的分布式聚类算法DBDC*.该算法在局部筛选代表点时结合贝叶斯信息准则BIC,得到少量精准反映局部站点数据分布的BIC核心点,有效降低... 对基于密度的分布式聚类算法DBDC(density based distributed clustering)进行改进,提出了一种基于密度的分布式聚类算法DBDC*.该算法在局部筛选代表点时结合贝叶斯信息准则BIC,得到少量精准反映局部站点数据分布的BIC核心点,有效降低了分布式聚类过程中的数据通信量,全局聚类时综合考虑了各站点数据的分布情况.实验结果表明,算法DBDC*的效率优于DBDC,聚类效果好. 展开更多
关键词 分布式 基于密度的聚类算法(DBSCAN) 分布式算法(DBDC)
在线阅读 下载PDF
基于视觉原理的密度聚类算法 被引量:5
4
作者 王伟东 芦金婵 张讲社 《工程数学学报》 CSCD 北大核心 2005年第2期349-352,共4页
在模式识别、图像处理、聚类分析等领域,人的眼睛具有快速有效地组织并发现物体内部结构的自然能力,本文就是在模拟人类视觉系统这一功能的基础上,结合基于密度的聚类方法提出了一种新的聚类算法,该算法具有对初始化参数不敏感、能发现... 在模式识别、图像处理、聚类分析等领域,人的眼睛具有快速有效地组织并发现物体内部结构的自然能力,本文就是在模拟人类视觉系统这一功能的基础上,结合基于密度的聚类方法提出了一种新的聚类算法,该算法具有对初始化参数不敏感、能发现任意形状的聚类及能找到最优聚类等优点。 展开更多
关键词 视觉系统 分析 基于密度的聚类算法
在线阅读 下载PDF
数据挖掘中聚类算法比较及在武警网络中的应用研究
5
作者 田杰 周晓娟 吕建新 《现代电子技术》 2008年第8期115-117,共3页
聚类算法是数据挖掘的核心技术,根据评价聚类算法优劣的几个标准,对数据挖掘中常用聚类算法做了比较分析,根据各自特点,加以改进,并应用于武警部队数据挖掘项目中。通过运用改进型K-means算法,取得了较好的挖掘结果,为进一步信息的智能... 聚类算法是数据挖掘的核心技术,根据评价聚类算法优劣的几个标准,对数据挖掘中常用聚类算法做了比较分析,根据各自特点,加以改进,并应用于武警部队数据挖掘项目中。通过运用改进型K-means算法,取得了较好的挖掘结果,为进一步信息的智能化检索、信息的过滤、分拣提供依据。 展开更多
关键词 数据挖掘 代表点算法 基于密度的聚类算法 K-MEANS算法 指挥自动化
在线阅读 下载PDF
改进的基于距离的关联规则聚类 被引量:3
6
作者 田宏 王亚伟 王毅 《计算机工程与设计》 CSCD 北大核心 2009年第5期1204-1206,共3页
关联规则挖掘会产生大量的规则,为了从这些规则中识别出有用的信息,需要对规则进行有效的分类组织。现有的规则聚类方法往往直接计算规则间的距离,忽略了项与项之间的联系,不能精确得出规则间的距离。提出一种改进的规则间距离的度量方... 关联规则挖掘会产生大量的规则,为了从这些规则中识别出有用的信息,需要对规则进行有效的分类组织。现有的规则聚类方法往往直接计算规则间的距离,忽略了项与项之间的联系,不能精确得出规则间的距离。提出一种改进的规则间距离的度量方法,首先计算项间的距离,其次计算相集间的距离和规则间的距离,最后基于此距离利用DBSCAN算法对关联规则进行聚类。实验结果表明,此方法是有效可行的,并能准确发现孤立规则。 展开更多
关键词 关联规则 项集 距离 基于密度的聚类算法
在线阅读 下载PDF
基于聚类和时序相关的重点雷达信号快速识别 被引量:7
7
作者 张怡霄 郭文普 +2 位作者 康凯 姚云龙 王攀 《系统工程与电子技术》 EI CSCD 北大核心 2020年第3期597-602,共6页
针对传统雷达信号识别方法对重点目标识别的针对性、时效性不强的问题,提出一种基于聚类和时序相关的重点雷达信号实时识别方法。首先,依据具有噪声的基于密度的聚类(density-based spatial clustering of application with noise,DBSC... 针对传统雷达信号识别方法对重点目标识别的针对性、时效性不强的问题,提出一种基于聚类和时序相关的重点雷达信号实时识别方法。首先,依据具有噪声的基于密度的聚类(density-based spatial clustering of application with noise,DBSCAN)算法对侦获信号的脉冲描述字进行分选;而后,利用分选所得脉冲的时序特征与重点目标信号脉冲重复间隔(pulse repetition interval,PRI)生成仿真信号;最后,计算仿真信号的互相关函数,基于相关度判断PRI参数是否匹配。仿真实验表明:所提方法明显提升了对重点目标信号的识别时效,能够应对存在噪声干扰和信号交叠的复杂信号环境,对局部脉冲参数丢失不敏感。 展开更多
关键词 雷达信号识别 基于密度的具有噪声的聚算法 脉冲描述字 时序相关
在线阅读 下载PDF
基于SURF的高密度人群计数方法 被引量:11
8
作者 梁荣华 刘向东 +2 位作者 马祥音 王子仁 宋明黎 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第12期1568-1575,共8页
为了解决在高密度人流或视场开阔环境下人群计数准确率低的问题,提出一种基于SURF的高密度人群计数方法.首先采用最小生成树改进了传统的基于密度的聚类算法,使其最小搜索域自适应聚类数据的分布;在此基础上实现运动人群的SURF特征点分... 为了解决在高密度人流或视场开阔环境下人群计数准确率低的问题,提出一种基于SURF的高密度人群计数方法.首先采用最小生成树改进了传统的基于密度的聚类算法,使其最小搜索域自适应聚类数据的分布;在此基础上实现运动人群的SURF特征点分类,并以此构建运动人群的特征向量,用支持向量回归机实现了对高密度人群的数量统计.实验结果表明,该方法对高密度人群的计数有较高的准确率和鲁棒性. 展开更多
关键词 密度人群计数 SURF 最小生成树 基于密度的聚类算法 支持向量回归机
在线阅读 下载PDF
DBSCAN算法中参数的自适应确定 被引量:38
9
作者 李宗林 罗可 《计算机工程与应用》 CSCD 北大核心 2016年第3期70-73,80,共5页
DBSCAN算法需要人为确定Eps和min Pts两个参数,导致聚类结果的准确度直接取决于用户对参数的选择,因此提出一种新的参数确定方法,采用非参数核密度估计理论分析数据样本的分布特征来自动确定Eps和min Pts参数,避免了聚类过程的人工干预... DBSCAN算法需要人为确定Eps和min Pts两个参数,导致聚类结果的准确度直接取决于用户对参数的选择,因此提出一种新的参数确定方法,采用非参数核密度估计理论分析数据样本的分布特征来自动确定Eps和min Pts参数,避免了聚类过程的人工干预,实现聚类过程的自动化。理论分析和实验结果表明,该方法能够选择合理的Eps和min Pts参数,并得到了较高准确度的聚类结果。 展开更多
关键词 一种经典的基于密度的聚类算法(DBSCAN) 密度估计 自适应
在线阅读 下载PDF
一种基于k-均值的DBSCAN算法参数动态选择方法 被引量:23
10
作者 王兆丰 单甘霖 《计算机工程与应用》 CSCD 北大核心 2017年第3期80-86,共7页
为解决DBSCAN聚类算法的Eps及MinPts参数选择问题,提出一种领域无关的参数动态选择方法。首先,基于k-均值算法对数据集进行初步聚类,聚类中采用最大最小距离方法确定初始聚类中心。其次,针对k-均值聚类结果,计算统计各聚类中样本间距离... 为解决DBSCAN聚类算法的Eps及MinPts参数选择问题,提出一种领域无关的参数动态选择方法。首先,基于k-均值算法对数据集进行初步聚类,聚类中采用最大最小距离方法确定初始聚类中心。其次,针对k-均值聚类结果,计算统计各聚类中样本间距离的分布情况,选择使得具有最大样本对数的距离值作为对应类的Eps值,并通过Eps获得MinPts值。最后,对DBSCAN算法进行改进,使其可根据当前核心点所属k-均值聚类对应的Eps对其运行值进行自适应调整。将上述思想运用于未知协议条件下的比特流聚类分析,结果表明,在无需用户指定Eps及MinPts的条件下,即可获得满意的聚类结果,提高了算法的适用性和准确率。 展开更多
关键词 一种经典的基于密度的聚类算法(DBSCAN) 参数选择 K-均值算法 未知协议
在线阅读 下载PDF
基于DBSCAN算法的改进确定-随机子空间模态参数识别算法 被引量:8
11
作者 单豪良 陈永高 孙泽阳 《振动与冲击》 EI CSCD 北大核心 2022年第11期156-163,共8页
桥梁结构的模态参数识别作为桥梁健康检测系统中的主要环节之一,参数识别的精确程度直接影响着桥梁健康评估的准确程度。因此,针对现阶段被广泛运用的确定-随机子空间算法(combined determine-stochastic subspace identification,CDSI... 桥梁结构的模态参数识别作为桥梁健康检测系统中的主要环节之一,参数识别的精确程度直接影响着桥梁健康评估的准确程度。因此,针对现阶段被广泛运用的确定-随机子空间算法(combined determine-stochastic subspace identification,CDSI)存在的不足,需人工参与稳定图中模态的辨识,提出了将基于密度的聚类算法(density-based spatial clustering of application with noise,DBSCAN)嵌入到该识别算法中,以提高模态参数识别的效率。首先简单介绍了CDSI识别算法和DBSCAN聚类的相关原理及定义,其次详细介绍了如何将DBSCAN聚类算法有效地嵌入到CDSI算法中,以实现对稳定图中模态的智能化辨识;最后以某大型斜拉桥为识别对象,并将识别结果与MIDAS有限元软件所得结果作对比,结果表明,所提改进CDSI识别算法能够精确地识别出桥梁结构的固有频率值,且所得模态振型图与理论振型图具有很好的相似性。 展开更多
关键词 桥梁结构 确定-随机子空间算法 基于密度的聚类算法 稳定图 固有频率值 模态振型
在线阅读 下载PDF
岩质高边坡结构面识别及产状统计信息采集方法 被引量:1
12
作者 蒋水华 余琦 +2 位作者 黄河 常志璐 孟京京 《工矿自动化》 CSCD 北大核心 2024年第7期156-164,共9页
准确识别岩质高边坡结构面和获取产状统计信息是进行边坡稳定性分析的重要前提。无人机摄影测量技术为解决高边坡结构面准确勘测难题提供了可能,但缺少高效准确的影像后处理方法,且现有研究没有考虑结构面产状信息特征的不确定性,致使... 准确识别岩质高边坡结构面和获取产状统计信息是进行边坡稳定性分析的重要前提。无人机摄影测量技术为解决高边坡结构面准确勘测难题提供了可能,但缺少高效准确的影像后处理方法,且现有研究没有考虑结构面产状信息特征的不确定性,致使结构面识别准确性差、效率低。针对该问题,以江西省南昌市某露天矿高边坡为研究背景,提出了融合无人机摄影、后处理算法及统计分析的一体化结构面识别与产状统计信息采集方法。首先,通过Phantom 4 Pro V2.0无人机获取边坡表面影像;其次,利用Context Capture软件进行处理,得到高密度三维点云数据;然后,采用K近邻(KNN)算法中的确定近邻点数量法构建相似点集,采用基于密度的聚类(DBSCAN)算法进行聚类分析,从而实现边坡结构面识别,获得结构面产状信息并进行统计特征分析;最后,通过现场勘测数据进行对比验证。结果表明:该方法能够快速获取完整的高密度点云数据,准确高效地识别岩质高边坡大部分结构面,识别结果与边坡工程现场实际情况基本吻合;该方法可获取高边坡结构面数量、产状信息及其统计特征,大部分结构面倾角和倾向概率分布与实测数据拟合较好,为高边坡裂隙网络模型构建及稳定性分析提供了重要数据来源。 展开更多
关键词 岩质高边坡 结构面识别 产状统计信息 无人机摄影测量 K近邻算法 基于密度的聚类算法
在线阅读 下载PDF
基于电压序列相似性的户变关系与相别识别
13
作者 楚成博 朱丽萍 +3 位作者 方磊 樊清川 吴蓉 袁捷 《现代电力》 北大核心 2024年第6期1052-1059,共8页
随着低压配电网的改造升级,台区户变关系变化频繁,为解决时有发生的用户台区挂错现象,提出一种利用改进的基于密度的点排序识别聚类结构(ordering points to identify the clustering structure,OPTICS)的台区户变关系识别和相别识别方... 随着低压配电网的改造升级,台区户变关系变化频繁,为解决时有发生的用户台区挂错现象,提出一种利用改进的基于密度的点排序识别聚类结构(ordering points to identify the clustering structure,OPTICS)的台区户变关系识别和相别识别方法。首先,对配网电压序列的相关性进行定性分析,提出利用电压时序序列作为分析识别的数据基础;其次,采用改进的自适应分段聚合近似(adaptive piecewise aggregate approximation,APAA)对电压序列进行降维处理,提取能够反映电压特征的低维向量;然后利用改进的OPTICS算法对所提取的特征向量进行聚类分析,识别台区的户变关系和相别关系;最后,基于实际的台区数据进行算例分析,验证了所提方法的准确性。 展开更多
关键词 户变关系 相别识别 时序序列数据 特征提取 自适应分段合近似 基于密度的聚类算法
在线阅读 下载PDF
一种面向生产调度规则挖掘的数据离散化方法 被引量:6
14
作者 焦磊 刘晓军 +1 位作者 刘庭煜 倪中华 《计算机集成制造系统》 EI CSCD 北大核心 2016年第1期257-264,共8页
针对车间生产数据的特点及数据挖掘技术对离散处理的客观需求,建立一种基于动态聚类的连续值离散化方法,并利用决策系统的相容性原则建立目标函数。对基于密度的聚类算法进行改进,提出一种单维度多半径聚类算法。将该聚类算法应用于离... 针对车间生产数据的特点及数据挖掘技术对离散处理的客观需求,建立一种基于动态聚类的连续值离散化方法,并利用决策系统的相容性原则建立目标函数。对基于密度的聚类算法进行改进,提出一种单维度多半径聚类算法。将该聚类算法应用于离散处理,阐述了基于动态聚类离散算法的整体过程。实验数据表明,该离散算法可以保持决策系统原有的相容度,具有速度快、内存占用率低和自动化程度高等优点,且具有良好的通用性,适用于生产数据的离散处理。 展开更多
关键词 离散化 生产调度 数据挖掘 基于密度的聚类算法
在线阅读 下载PDF
面向巡视探测任务的复杂地形信息感知与场景重建 被引量:1
15
作者 赵迪 胡梦雅 +2 位作者 李世其 纪合超 何宁 《载人航天》 CSCD 北大核心 2021年第3期339-349,共11页
针对复杂地形环境下巡视探测中避障问题,提出了一种基于点云的地形信息感知与场景建模方法。首先对获取的点云数据进行稀疏采样和滤波降噪;然后结合移动机器人越障能力极限与改进的随机采样一致性算法,拟合其自适应基准面作为可通行区域... 针对复杂地形环境下巡视探测中避障问题,提出了一种基于点云的地形信息感知与场景建模方法。首先对获取的点云数据进行稀疏采样和滤波降噪;然后结合移动机器人越障能力极限与改进的随机采样一致性算法,拟合其自适应基准面作为可通行区域;其后使用基于密度的聚类算法感知地形特征信息,并采用凸包算法提取地形特征轮廓;最后结合自适应基准平面进行快速三维场景重建,为地面观测提供直观快速的巡视器周围三维环境模型。通过对复杂地形环境进行模拟实验,结果表明:该方法可以有效获取复杂地形信息,并可大幅度提高场景重建的效率。 展开更多
关键词 地形信息感知 随机采样一致性算法 基于密度的聚类算法 凸包算法 快速三维重建
在线阅读 下载PDF
基于手机收集的无线信号的自动地点学习方法
16
作者 许亚倩 李建武 《无线电通信技术》 2017年第4期9-12,29,共5页
大部分人的日常生活通常只集中在少数几个特定的地点(例如家、办公室、食堂、餐厅、咖啡店及健身房等)。这几个地点与人们的行为和日程息息相关,被称为有意义的地点。地点学习是一种新兴技术,利用手机传感器收集到的数据自动学习对用户... 大部分人的日常生活通常只集中在少数几个特定的地点(例如家、办公室、食堂、餐厅、咖啡店及健身房等)。这几个地点与人们的行为和日程息息相关,被称为有意义的地点。地点学习是一种新兴技术,利用手机传感器收集到的数据自动学习对用户有意义的地点。所学习的地点信息可以用于大量基于地点的移动应用和互联网服务,也可以帮助推断用户侧写。详细介绍了一种自动地点学习方法——利用手机自动收集的无线信号的信号强度指示符(Received Signal Strength Indicators,RSSI),采用基于密度的聚类算法,自动学习对用户有意义的地点,生成地点的无线指纹。此外,还讨论了该自动地点学习方法在实验室和现实场景中的工作性能,建立模型并确定最佳参数,用于提供最佳的地点正确识别率。 展开更多
关键词 地点学习 无线指纹 基于密度的聚类算法
在线阅读 下载PDF
多空间尺度融合的出行轨迹规律分析
17
作者 陆妍玲 黄娅琦 +3 位作者 王杰 黄露 赵毅 李景文 《科学技术与工程》 北大核心 2023年第20期8530-8539,共10页
多源时空轨迹数据隐含丰富的城市出行信息,通过对其进行挖掘、处理和分析,可以找到个体与群体之间的交互关系。针对轨迹数据挖掘研究范围单一,缺少多空间尺度研究的问题,提出一种融合多空间尺度特征的出行轨迹数据挖掘分析方法。以广东... 多源时空轨迹数据隐含丰富的城市出行信息,通过对其进行挖掘、处理和分析,可以找到个体与群体之间的交互关系。针对轨迹数据挖掘研究范围单一,缺少多空间尺度研究的问题,提出一种融合多空间尺度特征的出行轨迹数据挖掘分析方法。以广东为例,结合社交媒体腾讯用户密度(Tencent user density,TUD)数据集,通过具有噪声的基于密度的聚类方法(density-based spatial clustering of applications with noise,DBSCAN)聚类算法与局部密度峰值计算法提取时空相似性轨迹区域,进而簇类分成一系列热点区域,获得不同时间粒度、不同空间尺度下的出行轨迹规律特征。这能够实现在不同空间尺度融合下展示同一地区的热点区域,进一步探讨出行轨迹的规律变化。可见所提出的方法为利用时空大数据进行城市空间结构研究提供科学参考。 展开更多
关键词 多空间尺度 具有噪声的基于密度的聚方法(DBSCAN)算法 局部密度峰值 热点区域 时空分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部