针对无人机可见光图像目标小、对比度弱的问题,本文提出一种基于简单线性迭代聚类(Simple linear iterative clustering,SLIC)分层分割的极小目标检测方法。首先使用预处理方法提高原始图像的对比度,并利用Top-hat融合方法进行初始分割...针对无人机可见光图像目标小、对比度弱的问题,本文提出一种基于简单线性迭代聚类(Simple linear iterative clustering,SLIC)分层分割的极小目标检测方法。首先使用预处理方法提高原始图像的对比度,并利用Top-hat融合方法进行初始分割以确定目标区域,其次利用SLIC方法完成目标精细分割,并采用改进的具有噪声的基于密度的聚类方法(Density-based spatial clustering of applications with noise,DBSCAN)对SLIC分割结果进行超像素聚类,最后提取目标的邻域熵等多种底层特征,使用特征匹配方式检测目标,获取最终检测结果。本文提出了一种全局检测和局部检测相结合的检测策略,极大提高了检测速度。仿真结果表明,本文方法可以有效提高无人机小目标的检测性能,加速检测速度。展开更多
多源时空轨迹数据隐含丰富的城市出行信息,通过对其进行挖掘、处理和分析,可以找到个体与群体之间的交互关系。针对轨迹数据挖掘研究范围单一,缺少多空间尺度研究的问题,提出一种融合多空间尺度特征的出行轨迹数据挖掘分析方法。以广东...多源时空轨迹数据隐含丰富的城市出行信息,通过对其进行挖掘、处理和分析,可以找到个体与群体之间的交互关系。针对轨迹数据挖掘研究范围单一,缺少多空间尺度研究的问题,提出一种融合多空间尺度特征的出行轨迹数据挖掘分析方法。以广东为例,结合社交媒体腾讯用户密度(Tencent user density,TUD)数据集,通过具有噪声的基于密度的聚类方法(density-based spatial clustering of applications with noise,DBSCAN)聚类算法与局部密度峰值计算法提取时空相似性轨迹区域,进而簇类分成一系列热点区域,获得不同时间粒度、不同空间尺度下的出行轨迹规律特征。这能够实现在不同空间尺度融合下展示同一地区的热点区域,进一步探讨出行轨迹的规律变化。可见所提出的方法为利用时空大数据进行城市空间结构研究提供科学参考。展开更多
文摘针对无人机可见光图像目标小、对比度弱的问题,本文提出一种基于简单线性迭代聚类(Simple linear iterative clustering,SLIC)分层分割的极小目标检测方法。首先使用预处理方法提高原始图像的对比度,并利用Top-hat融合方法进行初始分割以确定目标区域,其次利用SLIC方法完成目标精细分割,并采用改进的具有噪声的基于密度的聚类方法(Density-based spatial clustering of applications with noise,DBSCAN)对SLIC分割结果进行超像素聚类,最后提取目标的邻域熵等多种底层特征,使用特征匹配方式检测目标,获取最终检测结果。本文提出了一种全局检测和局部检测相结合的检测策略,极大提高了检测速度。仿真结果表明,本文方法可以有效提高无人机小目标的检测性能,加速检测速度。
文摘多源时空轨迹数据隐含丰富的城市出行信息,通过对其进行挖掘、处理和分析,可以找到个体与群体之间的交互关系。针对轨迹数据挖掘研究范围单一,缺少多空间尺度研究的问题,提出一种融合多空间尺度特征的出行轨迹数据挖掘分析方法。以广东为例,结合社交媒体腾讯用户密度(Tencent user density,TUD)数据集,通过具有噪声的基于密度的聚类方法(density-based spatial clustering of applications with noise,DBSCAN)聚类算法与局部密度峰值计算法提取时空相似性轨迹区域,进而簇类分成一系列热点区域,获得不同时间粒度、不同空间尺度下的出行轨迹规律特征。这能够实现在不同空间尺度融合下展示同一地区的热点区域,进一步探讨出行轨迹的规律变化。可见所提出的方法为利用时空大数据进行城市空间结构研究提供科学参考。