期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
分区基于密度的聚类算法在激光雷达行人检测系统中的应用 被引量:7
1
作者 宋柱 付锐 +1 位作者 张名芳 刘新雨 《科学技术与工程》 北大核心 2017年第18期282-287,共6页
行人检测过程中原始DBSCAN算法不能正确地对密度不均匀的激光点云聚类,产生错误的聚类结果导致行人检测系统出现误检和漏检。为解决这一问题,基于激光雷达的行人检测系统在原始密度聚类算法DBSCAN的基础上提出了分区DBSCAN算法。该算法... 行人检测过程中原始DBSCAN算法不能正确地对密度不均匀的激光点云聚类,产生错误的聚类结果导致行人检测系统出现误检和漏检。为解决这一问题,基于激光雷达的行人检测系统在原始密度聚类算法DBSCAN的基础上提出了分区DBSCAN算法。该算法将密度不均匀的点云数据划分为若干个密度相对均匀的分区,从而能实现对行人的快速准确检测。实验结果表明原始DBSCAN算法行人检测率为62.47%,使用分区DBSCAN算法的激光雷达行人检测系统行人检测率达到82.21%,相对于原始DBSCAN算法检测精度提高了19.74%;而且在时间消耗上也比原始DBSCAN算法降低了16.22%。 展开更多
关键词 分区基于密度的聚类(DBSCAN) 算法 行人检测 激光雷达
在线阅读 下载PDF
一种基于密度的空间数据流在线聚类算法 被引量:28
2
作者 于彦伟 王沁 +1 位作者 邝俊 何杰 《自动化学报》 EI CSCD 北大核心 2012年第6期1051-1059,共9页
为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点... 为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033ms. 展开更多
关键词 空间数据挖掘 数据流 基于密度的聚类 在线算法 噪声处理
在线阅读 下载PDF
邻域平衡密度聚类算法 被引量:22
3
作者 武佳薇 李雄飞 +1 位作者 孙涛 李巍 《计算机研究与发展》 EI CSCD 北大核心 2010年第6期1044-1052,共9页
聚类是数据挖掘领域的一项重要分析手段.在分析核心对象与其邻域对象的分布特征后,引入对象的投影点,对象的邻域平衡、平衡核心对象、边界稀疏对象等概念.提出一种新的基于密度的聚类算法bDBSCAN(balance-DBSCAN).算法将核心对象邻域中... 聚类是数据挖掘领域的一项重要分析手段.在分析核心对象与其邻域对象的分布特征后,引入对象的投影点,对象的邻域平衡、平衡核心对象、边界稀疏对象等概念.提出一种新的基于密度的聚类算法bDBSCAN(balance-DBSCAN).算法将核心对象邻域中的对象投影,进行向量单位化,考察核心对象的邻域平衡性,将与平衡核心对象平衡密度可达的对象聚成一个簇.理论分析和实验结果表明,算法可以处理任意形状的簇,有效地排除边界稀疏对象这类噪声,并且可以解决高维数据聚类边界区分不明显、噪声对象多等问题,提高了聚类精度.算法的时间复杂度与DBSCAN近似. 展开更多
关键词 投影点 邻域平衡 平衡核心对象 边界稀疏对象 基于密度的聚类算法
在线阅读 下载PDF
基于密度的计算机兵棋推演数据快速聚类算法 被引量:5
4
作者 石崇林 张茂军 +2 位作者 吴琳 唐宇波 景民 《系统工程与电子技术》 EI CSCD 北大核心 2011年第11期2428-2433,共6页
针对计算机兵棋推演数据的特点,提出了一种基于密度的快速聚类算法—基于密度的快速空间聚类算法(quick density based spatial clustering of applications with noise,QDBSCAN),目的是通过聚类检测孤立点,快速定位地面部队兵力部署上... 针对计算机兵棋推演数据的特点,提出了一种基于密度的快速聚类算法—基于密度的快速空间聚类算法(quick density based spatial clustering of applications with noise,QDBSCAN),目的是通过聚类检测孤立点,快速定位地面部队兵力部署上的缺陷。QDBSCAN算法在基于密度的空间聚类算法(density based spatial cluste-ring of applications with noise,DBSCAN)算法的基础上做了相关改进:在邻近度度量上提出了最短可行路径的概念,使聚类更符合计算机兵棋的规则;动态设置密度参数;采用提出的代表对象选择方法来减少对对象邻域的判断次数;按区域对数据进行分组以缩小聚类规模。实验表明,QDBSCAN算法的性能在数据规模较大的情况下,明显优于DBSCAN算法。 展开更多
关键词 数据挖掘 兵棋推演数据 基于密度的聚类算法 最短可行路径
在线阅读 下载PDF
基于密度的不确定性数据概率聚类 被引量:12
5
作者 许华杰 李国徽 +1 位作者 杨兵 杜建强 《计算机科学》 CSCD 北大核心 2009年第5期68-71,共4页
近期传感数据监测和移动对象跟踪等许多从自然界直接采集数据的新应用引发了不确定性数据管理这一新的研究课题。这些应用中相关数据的不确定性为传统的数据处理方法提出了新的挑战。探讨的重点是不确定性数据的聚类。提出了一个针对不... 近期传感数据监测和移动对象跟踪等许多从自然界直接采集数据的新应用引发了不确定性数据管理这一新的研究课题。这些应用中相关数据的不确定性为传统的数据处理方法提出了新的挑战。探讨的重点是不确定性数据的聚类。提出了一个针对不确定性数据的基于密度的聚类算法,根据不确定性数据内在的概率分布信息进行概率聚类,并采用R树索引和概率阀值索引提高算法的效率。仿真试验表明,提出的算法在有效性和效率方面均优于当前主要的基于密度的不确定性数据聚类算法。 展开更多
关键词 基于密度的聚类 不确定性数据 R树
在线阅读 下载PDF
VDBSCAN:变密度聚类算法 被引量:22
6
作者 周董 刘鹏 《计算机工程与应用》 CSCD 北大核心 2009年第11期137-141,153,共6页
传统的密度聚类算法不能识别并聚类多个不同密度的簇。对此提出了变密度聚类算法VDBSCAN,针对密度不稳定的数据集,可有效识别并同时聚类不同密度的簇,避免合并和遗漏。VDBSCAN算法的基本思想是:根据k-dist图和DK分析,对数据集中的不同... 传统的密度聚类算法不能识别并聚类多个不同密度的簇。对此提出了变密度聚类算法VDBSCAN,针对密度不稳定的数据集,可有效识别并同时聚类不同密度的簇,避免合并和遗漏。VDBSCAN算法的基本思想是:根据k-dist图和DK分析,对数据集中的不同密度层次自动选择一组Eps值,分别调用DBSCAN算法。不同的Eps值,能够找到不同密度的簇。4个二维数据集实验验证了VDB-SCAN算法的有效性,表明VDBSCAN算法可以有效地聚类密度不均匀的数据集,且参数Eps的自动选择方法也是有效的和健壮的。 展开更多
关键词 密度算法 基于密度的聚类 DBSCAN 数据挖掘
在线阅读 下载PDF
一种基于密度的分布式聚类算法 被引量:11
7
作者 郑苗苗 吉根林 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期536-543,共8页
对基于密度的分布式聚类算法DBDC(density based distributed clustering)进行改进,提出了一种基于密度的分布式聚类算法DBDC*.该算法在局部筛选代表点时结合贝叶斯信息准则BIC,得到少量精准反映局部站点数据分布的BIC核心点,有效降低... 对基于密度的分布式聚类算法DBDC(density based distributed clustering)进行改进,提出了一种基于密度的分布式聚类算法DBDC*.该算法在局部筛选代表点时结合贝叶斯信息准则BIC,得到少量精准反映局部站点数据分布的BIC核心点,有效降低了分布式聚类过程中的数据通信量,全局聚类时综合考虑了各站点数据的分布情况.实验结果表明,算法DBDC*的效率优于DBDC,聚类效果好. 展开更多
关键词 分布式 基于密度的聚类算法(DBSCAN) 分布式算法(DBDC)
在线阅读 下载PDF
基于视觉原理的密度聚类算法 被引量:5
8
作者 王伟东 芦金婵 张讲社 《工程数学学报》 CSCD 北大核心 2005年第2期349-352,共4页
在模式识别、图像处理、聚类分析等领域,人的眼睛具有快速有效地组织并发现物体内部结构的自然能力,本文就是在模拟人类视觉系统这一功能的基础上,结合基于密度的聚类方法提出了一种新的聚类算法,该算法具有对初始化参数不敏感、能发现... 在模式识别、图像处理、聚类分析等领域,人的眼睛具有快速有效地组织并发现物体内部结构的自然能力,本文就是在模拟人类视觉系统这一功能的基础上,结合基于密度的聚类方法提出了一种新的聚类算法,该算法具有对初始化参数不敏感、能发现任意形状的聚类及能找到最优聚类等优点。 展开更多
关键词 视觉系统 分析 基于密度的聚类算法
在线阅读 下载PDF
一种基于网格和密度的数据流聚类算法 被引量:6
9
作者 高永梅 黄亚楼 《计算机科学》 CSCD 北大核心 2008年第2期134-137,共4页
在"数据流分析"这一数据挖掘的应用领域中,常规的算法显得很不适用。主要是因为这些算法的挖掘过程不能适应数据流的动态环境,其挖掘模型、挖掘结果不能满足实际应用中用户的需求。针对这一问题,本文提出了一种基于网格和密... 在"数据流分析"这一数据挖掘的应用领域中,常规的算法显得很不适用。主要是因为这些算法的挖掘过程不能适应数据流的动态环境,其挖掘模型、挖掘结果不能满足实际应用中用户的需求。针对这一问题,本文提出了一种基于网格和密度的聚类方法,来有效地完成对数据流的分析任务。该方法打破传统聚类方法的束缚,把整个挖掘过程分为离线和在线两步,最终通过基于网格和密度的聚类方法实现数据流聚类。 展开更多
关键词 网格 基于密度的聚类 数据流
在线阅读 下载PDF
DENGENE:一种高精度的基于密度的适用于基因表达数据的聚类算法 被引量:1
10
作者 孙亮 赵芳 王永吉 《计算机应用研究》 CSCD 北大核心 2007年第4期58-61,共4页
根据基因表达数据的特点,提出一种高精度的基于密度的聚类算法DENGENE。DENGENE通过定义一致性检测和引进峰点改进搜索方向,使得算法能够更好地处理基因表达数据。为了评价算法的性能,选取了两组广为使用的测试数据,即啤酒酵母基因表达... 根据基因表达数据的特点,提出一种高精度的基于密度的聚类算法DENGENE。DENGENE通过定义一致性检测和引进峰点改进搜索方向,使得算法能够更好地处理基因表达数据。为了评价算法的性能,选取了两组广为使用的测试数据,即啤酒酵母基因表达数据集对算法来进行测试。实验结果表明,与基于模型的五种算法、CAST算法、K-均值聚类等相比,DENGENE在滤除噪声和聚类精度方面取得了显著的改善。 展开更多
关键词 基因表达数据 分析 基于密度的聚类 一致性检测 峰点
在线阅读 下载PDF
流形上的空间密度聚类算法研究 被引量:1
11
作者 刘峰 刘希玉 刘弘 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期681-684,626,共5页
研究流形上的聚类分析,针对基于密度的空间聚类引入了流形概念,提出1种基于流形的密度聚类算法,该方法将流形的概念与聚类相结合,可以适用于样本为复杂分布的聚类。文中通过实例证明此算法的有效性。
关键词 空间 流形 流形学习 主成分分析法 基于密度的聚类
在线阅读 下载PDF
基于密度聚类算法的入侵检测研究 被引量:1
12
作者 蔡伟鸿 刘震 《计算机工程与应用》 CSCD 北大核心 2005年第21期149-151,共3页
本文联系异常检测和数据挖掘,从理论上着重分析了在入侵检测系统中应用基于密度聚类算法的必要性和有效性,从TCPDump网络数据和系统日志中提取分析后生成特征数据,通过Clenmine中CEMI实现定制的基于密度的改进DBSCAN算法进行测试,结果... 本文联系异常检测和数据挖掘,从理论上着重分析了在入侵检测系统中应用基于密度聚类算法的必要性和有效性,从TCPDump网络数据和系统日志中提取分析后生成特征数据,通过Clenmine中CEMI实现定制的基于密度的改进DBSCAN算法进行测试,结果表明利用该算法可以较好地识别分布式拒绝服务攻击等多种入侵行为。 展开更多
关键词 异常检测 基于密度的聚类 数据挖掘
在线阅读 下载PDF
一种基于密度聚类的一般观点——拓扑聚类
13
作者 刘希玉 张建萍 《计算机工程与应用》 CSCD 北大核心 2007年第26期164-168,183,共6页
针对基于密度的空间聚类及其变种提出了拓扑的概念。给出了聚类拓扑结构的定义,把簇定义为多种拓扑连通集合。此外,运用全新的拓扑思想改进典型的算法,提出了一种拓扑聚类的新算法。实例证明此算法有效。
关键词 空间 拓扑结构 连通集合 算法 基于密度的聚类
在线阅读 下载PDF
基于改进的随机森林和密度聚类的短期负荷频域预测方法 被引量:22
14
作者 张金金 张倩 +1 位作者 马愿 李智 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第10期2257-2265,共9页
精确的负荷预测对于电力系统的有效调度和安全运行至关重要.本文提出基于改进的随机森林(IRF)和密度的聚类(DBSCAN)的频域组合预测方法.首先,采用经验小波变换(EWT)分解负荷,得到不同的固有模态分量(IMFs);其次,根据各分量特征采用合理... 精确的负荷预测对于电力系统的有效调度和安全运行至关重要.本文提出基于改进的随机森林(IRF)和密度的聚类(DBSCAN)的频域组合预测方法.首先,采用经验小波变换(EWT)分解负荷,得到不同的固有模态分量(IMFs);其次,根据各分量特征采用合理的方法进行预测.其中,低频、中频分量采用IRF预测;高频分量使用DBSCAN根据气象因素温度和湿度聚类,再根据每类的样本特性选择处理方法.最后,叠加各分量的预测值,获取负荷预测值.根据某地市现场负荷数据进行实验,预测结果分别与EWT–IRF,EWT–随机森林(RF)、经验模态分解(EMD)–IRF模型的预测结果进行对比.结果表明,提出的模型具有更高的预测精度,反映了实际负荷的随机性. 展开更多
关键词 负荷预测 基于改进的随机森林 基于密度的聚类 经验小波变换
在线阅读 下载PDF
一种基于密度的无参数聚类算法
15
作者 娄冬梅 陈明 朱有娜 《计算机研究与发展》 EI CSCD 北大核心 2006年第z3期328-331,共4页
大多数聚类算法在聚类过程中需要输入参数,并且对输入参数具有一定的敏感性.针对这种不足,在基于密度的聚类方法基础之上融合模糊聚类思想,给出了一种密度的无参数(无需输入任何参数)聚类算法.实验结果表明,算法能有效地找出任意形状的... 大多数聚类算法在聚类过程中需要输入参数,并且对输入参数具有一定的敏感性.针对这种不足,在基于密度的聚类方法基础之上融合模糊聚类思想,给出了一种密度的无参数(无需输入任何参数)聚类算法.实验结果表明,算法能有效地找出任意形状的簇,且聚类结果质量高,适应于大型数据集. 展开更多
关键词 基于密度的聚类 模糊 多分辨率 无参数 隶属度函数
在线阅读 下载PDF
基于密度流形上的空间聚类
16
作者 唐皓 刘希玉 《河北大学学报(自然科学版)》 CAS 北大核心 2009年第6期658-662,共5页
对于具备空间特性的数据来说,基于密度的聚类方法是一种基本且行之有效的聚类技术.尽管现有很多基于密度的空间聚类算法和技术,但是这些算法多数都假设数据分布于平滑空间.弯曲空间与平滑空间只局部存在相似性.本文的目的在于探讨一种... 对于具备空间特性的数据来说,基于密度的聚类方法是一种基本且行之有效的聚类技术.尽管现有很多基于密度的空间聚类算法和技术,但是这些算法多数都假设数据分布于平滑空间.弯曲空间与平滑空间只局部存在相似性.本文的目的在于探讨一种新的基于密度的流形空间聚类,即基于弯曲空间的算法.此算法主要来源于切空间,并适用于非均匀、非线性的数据分布,同时给出了性能分析和实验测试. 展开更多
关键词 分析 流形学习 数据挖掘 基于密度的聚类
在线阅读 下载PDF
一种基于密度峰值的针对模糊混合数据的聚类算法 被引量:8
17
作者 陈奕延 李晔 李存金 《计算机工程与科学》 CSCD 北大核心 2020年第2期317-324,共8页
将CFSFDP算法拓展到连续型模糊集和离散型模糊集上,提出了一种针对模糊混合数据的拓展型CFSFDP算法,将其命名为FMD-CFSFDP算法。FMD-CFSFDP算法将样本涵盖的经典信息拓展到了模糊集上,利用寻找密度峰值的方法对模糊样本进行聚类,这是一... 将CFSFDP算法拓展到连续型模糊集和离散型模糊集上,提出了一种针对模糊混合数据的拓展型CFSFDP算法,将其命名为FMD-CFSFDP算法。FMD-CFSFDP算法将样本涵盖的经典信息拓展到了模糊集上,利用寻找密度峰值的方法对模糊样本进行聚类,这是一种建立在模糊集上针对模糊混合数据的基于密度的聚类算法。首先简单介绍了CFSFDP算法及其改进,给出了“模糊混合数据”的数学概念;然后结合传统模糊欧氏距离的概念,分别提出了误差更小的针对连续型模糊集与离散型模糊集的改进型欧氏距离,在此基础上,依托权值构建了针对混合型模糊数据的整体距离。参考CFSFDP算法的聚类步骤给出了FMD-CFSFDP算法的聚类步骤。随后,在不同样本量、不同指标数量、不同簇数、不同取数规则的条件下,对算法进行了随机模拟实验并对聚类结果进行了分析。最后分别总结了FMD-CFSFDP算法的优缺点,并在此基础上提出了改进方案,为今后深入研究提供了参考。 展开更多
关键词 模糊混合数据 基于密度峰值的聚 FMD-CFSFDP算法 改进型欧氏距离 整体距离
在线阅读 下载PDF
基于密度-距离图的交互式体数据分类方法 被引量:6
18
作者 周芳芳 高飞 +2 位作者 刘勇刚 梁兴 赵颖 《软件学报》 EI CSCD 北大核心 2016年第5期1061-1073,共13页
体数据分类是体绘制中传递函数设计的核心问题.标量值-梯度模直方图作为表征体数据的一种经典二维特征空间,已被广泛应用于分类体数据.然而,大部分已有方法存在过于依赖分类算法的参数设置、运算效率低、交互复杂度高等问题.以标量值-... 体数据分类是体绘制中传递函数设计的核心问题.标量值-梯度模直方图作为表征体数据的一种经典二维特征空间,已被广泛应用于分类体数据.然而,大部分已有方法存在过于依赖分类算法的参数设置、运算效率低、交互复杂度高等问题.以标量值-梯度模直方图的密度分布为基础,并依据物质中心密度大且物质中心间距离远这一特性,首先快速计算每个数据点的密度及每个数据点到比其密度大的点的最小距离;然后,将所有数据点投影到密度-距离图,并以密度-距离图作为人机接口,使用户能够交互地选择多个密度中心来分类体数据并设置传递函数.通过多组实验验证,所提出的方法无需预设物质类别的数量,分割标量值-梯度模直方图的准确度较高且速度较快,所设计的密度-距离图是一个有效的人机交互接口,可以有效地引导用户完成由粗糙到精细的递进式体数据分类和可视化过程. 展开更多
关键词 体数据 传递函数 体数据分 基于密度的聚类
在线阅读 下载PDF
一种特征加权的聚类算法框架 被引量:6
19
作者 高滢 刘大有 徐益 《计算机科学》 CSCD 北大核心 2008年第10期152-154,共3页
为了考虑数据各维特征对聚类的不同贡献,并把有监督特征评价方法应用到无监督分类问题中,提出一种特征加权的聚类算法框架。该框架首先通过某种聚类算法对数据聚类,然后,根据聚类结果,采用有监督特征评价方法学习各维特征的权值,再根据... 为了考虑数据各维特征对聚类的不同贡献,并把有监督特征评价方法应用到无监督分类问题中,提出一种特征加权的聚类算法框架。该框架首先通过某种聚类算法对数据聚类,然后,根据聚类结果,采用有监督特征评价方法学习各维特征的权值,再根据特征权值重新聚类,之后再次学习特征权值,该过程反复迭代,直至算法收敛或达到指定的迭代次数。欧几里德空间内基于距离、基于密度的聚类算法均适用于本框架。基于本框架,采用模糊C均值聚类算法(FCM)、密度聚类算法(DBSCAN),并通过信息增益特征评价、ReliefF特征评价方法,对多个UCI数据集进行了实验,验证了该框架的有效性。 展开更多
关键词 算法框架 特征加权 基于距离的聚 基于密度的聚类
在线阅读 下载PDF
改进的基于距离的关联规则聚类 被引量:3
20
作者 田宏 王亚伟 王毅 《计算机工程与设计》 CSCD 北大核心 2009年第5期1204-1206,共3页
关联规则挖掘会产生大量的规则,为了从这些规则中识别出有用的信息,需要对规则进行有效的分类组织。现有的规则聚类方法往往直接计算规则间的距离,忽略了项与项之间的联系,不能精确得出规则间的距离。提出一种改进的规则间距离的度量方... 关联规则挖掘会产生大量的规则,为了从这些规则中识别出有用的信息,需要对规则进行有效的分类组织。现有的规则聚类方法往往直接计算规则间的距离,忽略了项与项之间的联系,不能精确得出规则间的距离。提出一种改进的规则间距离的度量方法,首先计算项间的距离,其次计算相集间的距离和规则间的距离,最后基于此距离利用DBSCAN算法对关联规则进行聚类。实验结果表明,此方法是有效可行的,并能准确发现孤立规则。 展开更多
关键词 关联规则 项集 距离 基于密度的聚类算法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部