期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于密度的空间聚类与霍夫变换相结合的欠定盲源分离混合矩阵估计 被引量:3
1
作者 孙洁娣 李玉霞 +1 位作者 温江涛 闫盛楠 《高技术通讯》 CAS CSCD 北大核心 2014年第12期1270-1278,共9页
为解决欠定盲源分离中混合矩阵估计问题,提出了一种基于密度的空间聚类与霍夫变换相结合的混合矩阵估计算法。该算法首先通过基于相角的单源时频点处理增强信号的稀疏性,然后针对K-means算法需预先设置聚类个数的问题,采用基于密度的空... 为解决欠定盲源分离中混合矩阵估计问题,提出了一种基于密度的空间聚类与霍夫变换相结合的混合矩阵估计算法。该算法首先通过基于相角的单源时频点处理增强信号的稀疏性,然后针对K-means算法需预先设置聚类个数的问题,采用基于密度的空间聚类算法对单源点进行自动分类以估计源信号个数,进而估计得到混合矩阵。为提高估计混合矩阵的精度,采用霍夫变换方法修正聚类中心。基于密度的空间聚类算法的运用也克服了霍夫变换峰值簇拥问题。实验结果表明,基于密度的空间聚类与霍夫交换相结合的方法能在源信号数量未知情况下准确估计混合矩阵,且估计精度高于K-means算法和基于密度的空间聚类算法。 展开更多
关键词 欠定盲源分离(UBSS) 混合矩阵估计 霍夫变换 基于密度的空间聚类 K-MEANS
在线阅读 下载PDF
基于DBSCAN聚类和LSTM网络的装甲车辆集群轨迹预测方法
2
作者 陈刚 王国新 +3 位作者 明振军 陈旺 商曦文 阎艳 《兵工学报》 EI CAS CSCD 北大核心 2024年第12期4295-4310,共16页
针对装甲车辆运动状态复杂性、战场态势不确定性、战术迷惑和欺骗性导致装甲车辆集群运动轨迹难以准确预测的问题,提出一种基于密度的空间聚类应用(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)和长短时记忆(L... 针对装甲车辆运动状态复杂性、战场态势不确定性、战术迷惑和欺骗性导致装甲车辆集群运动轨迹难以准确预测的问题,提出一种基于密度的空间聚类应用(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)和长短时记忆(Long Short Term Memory,LSTM)神经网络的装甲车辆集群轨迹预测方法。根据装甲车辆的斜坡上行驶、转向和车-车交互行驶状态,建立运动学模型。选取机动特征、环境特征和车-车交互特征等轨迹特征信息,基于双层LSTM网络预测单个装甲车辆的轨迹。基于DBSCAN算法将多条单装预测轨迹进行分段、相似度计算和聚类,获得集群代表轨迹作为装甲车辆集群的预测轨迹。仿真结果表明,所提方法能够有效预测装甲车辆集群轨迹,实现料敌于先、谋敌于前。 展开更多
关键词 装甲车辆 集群轨迹预测 基于密度的空间聚类应用 长短时记忆网络 轨迹预测系统
在线阅读 下载PDF
基于AP密度聚类方法的雷达辐射源信号识别 被引量:2
3
作者 王美玲 张复春 杨承志 《舰船电子对抗》 2012年第3期1-5,共5页
未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进行... 未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进行初步聚类,再设定相关参数,运用基于密度的带有噪声的空间聚类(DBSCAN)算法进行二次聚类。相对于原样本,初始聚类结果分布具有一定的代表性,容易找到适合DBSCAN方法的参数值。测试表明该方法具有较高的识别率。 展开更多
关键词 辐射源识别 亲和传递 基于密度的带有噪声的空间
在线阅读 下载PDF
基于AP密度聚类方法的雷达辐射源信号识别
4
作者 郁平 高岚岚 +1 位作者 任浩 贾英杰 《矿业工程》 CAS 2012年第4期1-2,共2页
未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进... 未知雷达辐射源信号识别一直是雷达对抗情报分析中的难题。针对基于密度的聚类算法在处理不均匀样本时识别率较低的缺陷,将该算法与亲和传递(AP)聚类算法结合,提出一种基于AP密度聚类的识别方法。该方法先利用AP聚类方法对数据样本进行初步聚类,再设定相关参数,运用基于密度的带有噪声的空间聚类(DBSCAN)算法进行二次聚类。相对于原样本,初始聚类结果分布具有一定的代表性,容易找到适合DBSCAN方法的参数值。测试表明该方法具有较高的识别率。 展开更多
关键词 辐射源识别 亲和传递 基于密度的带有噪声的空间
在线阅读 下载PDF
考虑多维特征的船舶轨迹分层聚类算法 被引量:1
5
作者 苏俊杰 兰培真 《上海海事大学学报》 北大核心 2022年第4期30-36,共7页
为准确聚类复杂的船舶轨迹和辨识隐蔽轨迹簇,提出一种考虑多维特征的船舶轨迹分层聚类算法。用核心萤火虫算法(core firefly algorithm,CFA)解决具有噪声的基于密度的空间聚类(density-based spatial clustering of applications with n... 为准确聚类复杂的船舶轨迹和辨识隐蔽轨迹簇,提出一种考虑多维特征的船舶轨迹分层聚类算法。用核心萤火虫算法(core firefly algorithm,CFA)解决具有噪声的基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的邻域查询冗余和参数敏感问题,并在传统船舶轨迹聚类特征的基础上引入水域环境、轨迹线型和时隙特征来分层建立轨迹相似性度量指标,最终实现轨迹的逐层递进聚类。以厦门港及其附近水域的AIS数据验证算法的有效性,检验结果表明:船舶轨迹由算法聚类为9簇;簇内动态时间规整(dynamic time warping,DTW)距离均值为5.199,簇间DTW距离均值为18.032;聚类结果符合实际的船舶交通流情况,聚类准确率为91.50%。可见,提出的算法相比其他常用的轨迹聚类算法能更有效地辨识轨迹地理分布和船舶运动特征的异同,更容易发现隐蔽的轨迹簇。由提出的算法聚类的同簇轨迹,其船舶运动特性更相似,聚类结果可为船舶交通流特性分析及船舶行为模式识别等提供典型的轨迹样本。 展开更多
关键词 船舶轨迹 相似性度量 层次 核心萤火虫算法(CFA) 具有噪声的基于密度的空间聚类(DBSCAN)
在线阅读 下载PDF
基于轨迹聚类的多机场终端区飞行效率研究
6
作者 李魏 何巍巍 《交通与港航》 2021年第1期74-79,共6页
该文首先介绍一种飞行轨迹特征分析方法,接着介绍飞行效率评估指标,最后基于提出的方法、指标和上海多机场终端区实际飞行轨迹数据,对上海多机场终端区飞行效率进行详细的分析。研究表明,该文提出的方法和指标能够很好的应用在多机场终... 该文首先介绍一种飞行轨迹特征分析方法,接着介绍飞行效率评估指标,最后基于提出的方法、指标和上海多机场终端区实际飞行轨迹数据,对上海多机场终端区飞行效率进行详细的分析。研究表明,该文提出的方法和指标能够很好的应用在多机场终端区飞行效率研究中。同时,研究结果对改进多机场终端区飞行路径设计具有一定的参考意义。 展开更多
关键词 航空运输 多机场终端区 广播式自动相关监视 基于密度的空间聚类
在线阅读 下载PDF
S-DBSCAN:一种基于DBSCAN发现高密度簇的算法 被引量:5
7
作者 孙鹏 韩承德 曾涛 《高技术通讯》 CAS CSCD 北大核心 2012年第6期589-595,共7页
针对基于密度的带有噪声的空间聚类(DBSCAN)算法用于交互式数据挖掘时用户经常调整算法参数以发现感兴趣的知识以及数据集相对稳定的特点,提出了一种基于DBSCAN发现高密度簇的算法—S-DBSCAN算法,确定了需调整的算法参数——对象的... 针对基于密度的带有噪声的空间聚类(DBSCAN)算法用于交互式数据挖掘时用户经常调整算法参数以发现感兴趣的知识以及数据集相对稳定的特点,提出了一种基于DBSCAN发现高密度簇的算法—S-DBSCAN算法,确定了需调整的算法参数——对象的邻域范围8(Eps)和满足核心对象条件的£邻域内最小对象个数MinPts,阐述了参数8与MinPts的3种适合S-DBSCAN算法的变化情况,并给出了相应的证明,同时分析了算法的时间复杂度。在对真实和合成数据集的测试中,S-DBSCAN算法相比DBSCAN算法具有较好的效率。 展开更多
关键词 基于密度的带有噪声的空间(DBSCAN) S-DBSCAN 密度 数可变
在线阅读 下载PDF
基于激光雷达回波信号的雾天车道线快速检测
8
作者 陈琼 李小玲 《中国测试》 CAS 北大核心 2024年第11期120-128,共9页
当前主要通过深度神经网络模型提取路面车道线,并设计能见度检测网络,根据车道线可见长度检测路面车道线。但是,在雾天,基于深度分割神经网络设计编码解码结构非相关因素过多,无法通过其提取车道线特征图,无法准确检测图像坐标系下可见... 当前主要通过深度神经网络模型提取路面车道线,并设计能见度检测网络,根据车道线可见长度检测路面车道线。但是,在雾天,基于深度分割神经网络设计编码解码结构非相关因素过多,无法通过其提取车道线特征图,无法准确检测图像坐标系下可见车道线的高度。针对雾天驾驶时的视觉障碍问题,以激光雷达技术为支撑,提出雾天车道线快速检测方法。根据激光雷达回波信号中每个回波脉冲宽度级的扫描点数,采用最小类内方差算法,阈值分割路面与车道线扫描点,由3σ准则分离出车道线的种子点后,基于高斯核函数加权搜索的生长准则,经区域生长得到完整的车道线种子点集。基于密度的空间聚类算法二次聚类获取的车道线种子点集,得到车道线的识别结果。以识别结果为基础,建立抛物线模型,结合随机采样一致性算法和最小二乘法,依据拟合分值迭代取得最优模型,通过拟合完成车道线检测。实验结果表明:该方法屏蔽雾天干扰引起的非相关因素,清晰检测出雾天环境中的多种车道线。在雾天环境车道线检测中,交并比高于0.95,F1值高于96%,可以满足准确性和实时性需求,为雾天驾驶提供有效的解决方案。 展开更多
关键词 雾天环境 激光雷达 回波信号脉冲宽度 基于密度的空间聚类算法 抛物线 车道线检测
在线阅读 下载PDF
基于改进DBSCAN的船舶会遇识别模型
9
作者 陈蜀喆 龚彪 +1 位作者 康杰 孙俊博 《上海海事大学学报》 北大核心 2024年第1期1-9,共9页
为解决大数据下船舶会遇识别算法效率不高且存在误判等问题,提出一种融合国际海上避碰规则(International Regulations for Preventing Collisions at Sea,COLREGs)的带噪声的基于密度的空间聚类(density-based spatial clustering of a... 为解决大数据下船舶会遇识别算法效率不高且存在误判等问题,提出一种融合国际海上避碰规则(International Regulations for Preventing Collisions at Sea,COLREGs)的带噪声的基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法,建立船舶会遇识别模型。在DBSCAN算法对邻域内的船舶数量进行统计时,计算船舶间的最近会遇距离(distance to closest point of approach,DCPA)和最近会遇时间(time to closest point of approach,TCPA),初步筛选邻域内的噪声点;基于模糊综合评价模型计算船舶会遇风险,对邻域内的船舶进行二次筛选,实现船舶会遇态势的提取。结果表明:改进后的DBSCAN算法过滤掉传统DBSCAN算法识别到的非会遇局面,并且在同一会遇局面下的船舶数量均保持在4艘以内;输出的会遇船舶风险演变趋势对实际水域内高风险船舶的监控适用性较好,能有效辅助船舶避碰。所提识别模型对保障航行安全和提高海事监管效率具有重要意义。 展开更多
关键词 带噪声的基于密度的空间聚类(DBSCAN) 国际海上避碰规则(COLREGs) 模糊综合评价 船舶会遇 海事监管
在线阅读 下载PDF
电力线激光点云的分割及安全检测研究 被引量:33
10
作者 时磊 虢韬 +4 位作者 彭赤 石书山 杨立 任曦 胡伟 《激光技术》 CAS CSCD 北大核心 2019年第3期341-346,共6页
为了进行高压输电线路安全检测分析,基于机载激光雷达(LiDAR)电力走廊数据,提出了一种基于密度的空间聚类方法(DBSCAN)的电力线激光点云单条分割提取算法。通过该方法可以实现输电走廊中单条电力线的快速分割提取。首先对电力线点云在x-... 为了进行高压输电线路安全检测分析,基于机载激光雷达(LiDAR)电力走廊数据,提出了一种基于密度的空间聚类方法(DBSCAN)的电力线激光点云单条分割提取算法。通过该方法可以实现输电走廊中单条电力线的快速分割提取。首先对电力线点云在x-O-y平面上投影,对投影后的激光点采用最小二乘法进行直线拟合;其次通过计算输电走廊长度,采用经验参量进行电力线点云分段;再次对分段点云在投影平面内进行DBSCAN聚类;最后将分段聚类结果类别归一化,得到单条电力线激光点云数据。结果表明,采用该方法能够在只需经验参量分段宽度的情况下,快速准确地对电力线激光点云进行分割提取,并根据分割结果进行电力线与电力走廊地物距离计算,判断危险点类型及距离。所提出的方法具有较高的提取与测量精度,能够有效地应用于电力线安全检测分析。 展开更多
关键词 激光技术 电力线 激光点云 安全检测 机载激光雷达 基于密度的空间聚类
在线阅读 下载PDF
基于RANSAC-DBSCAN的风速功率曲线异常数据清洗方法
11
作者 罗朗川 李汝辉 +1 位作者 曾东 邹明衡 《太阳能学报》 2025年第4期445-453,共9页
针对海上风电机组在运行中不可避免地产生大量噪声、故障、弃风限电等异常数据,导致运行数据可用性差的问题。梳理和分析风功率曲线中异常数据的分布特征,提出基于随机采样一致(RANSAC)回归与含噪声的基于密度的空间聚类(DBSCAN)融合算... 针对海上风电机组在运行中不可避免地产生大量噪声、故障、弃风限电等异常数据,导致运行数据可用性差的问题。梳理和分析风功率曲线中异常数据的分布特征,提出基于随机采样一致(RANSAC)回归与含噪声的基于密度的空间聚类(DBSCAN)融合算法的风功率曲线异常数据清洗,并从算法的清洗效果、清洗效率以及数据删除合理性进行对比验证。结果表明,所提方法能够快速、简便、合理地识别异常数据范围,具有工程应用价值。 展开更多
关键词 海上风电 数据分析 异常诊断 随机采样一致 基于密度的空间聚类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部