期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
一种空间信息自适应的鲁棒模糊聚类算法 被引量:1
1
作者 周红纲 郭莉 时鹏飞 《青岛大学学报(工程技术版)》 CAS 2023年第1期1-15,共15页
针对传统模糊聚类算法利用空间信息对抗噪声时对图像分割造成影响的问题,本文提出一种新型鲁棒模糊聚类方法(fuzzy c-means_adaptive spatial,FCM_AS)。在传统FCM算法基础上,引入空间信息自适应方法,提出了新的模糊聚类模型FCM_AS及其... 针对传统模糊聚类算法利用空间信息对抗噪声时对图像分割造成影响的问题,本文提出一种新型鲁棒模糊聚类方法(fuzzy c-means_adaptive spatial,FCM_AS)。在传统FCM算法基础上,引入空间信息自适应方法,提出了新的模糊聚类模型FCM_AS及其对应的迭代优化算法。该模型在利用像素空间信息对抗噪声的同时,在像素的局部信息和非局部信息之间,设置一个自适应权重参数,实现对空间信息的自适应调整。为验证本文算法的有效性,采用多种流行算法在合成图像和脑MR图像上进行对比实验。实验结果表明,与传统的模糊聚类方法相比,FCM_AS算法在处理合成图像和复杂的医学图像噪声时,可有效消除噪声对分割过程的影响,分类相对准确,且边缘信息平滑,图片准确度较高,更加接近理想分割效果,具有更好的鲁棒性和优越性,是一种稳健的图像分割算法。该研究实现了对空间信息的自适应调整,具有一定的理论意义和应用价值。 展开更多
关键词 模糊 医学图像 图像分割 空间信息自适应 算法
在线阅读 下载PDF
考虑多维特征的船舶轨迹分层聚类算法 被引量:1
2
作者 苏俊杰 兰培真 《上海海事大学学报》 北大核心 2022年第4期30-36,共7页
为准确聚类复杂的船舶轨迹和辨识隐蔽轨迹簇,提出一种考虑多维特征的船舶轨迹分层聚类算法。用核心萤火虫算法(core firefly algorithm,CFA)解决具有噪声的基于密度的空间聚类(density-based spatial clustering of applications with n... 为准确聚类复杂的船舶轨迹和辨识隐蔽轨迹簇,提出一种考虑多维特征的船舶轨迹分层聚类算法。用核心萤火虫算法(core firefly algorithm,CFA)解决具有噪声的基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的邻域查询冗余和参数敏感问题,并在传统船舶轨迹聚类特征的基础上引入水域环境、轨迹线型和时隙特征来分层建立轨迹相似性度量指标,最终实现轨迹的逐层递进聚类。以厦门港及其附近水域的AIS数据验证算法的有效性,检验结果表明:船舶轨迹由算法聚类为9簇;簇内动态时间规整(dynamic time warping,DTW)距离均值为5.199,簇间DTW距离均值为18.032;聚类结果符合实际的船舶交通流情况,聚类准确率为91.50%。可见,提出的算法相比其他常用的轨迹聚类算法能更有效地辨识轨迹地理分布和船舶运动特征的异同,更容易发现隐蔽的轨迹簇。由提出的算法聚类的同簇轨迹,其船舶运动特性更相似,聚类结果可为船舶交通流特性分析及船舶行为模式识别等提供典型的轨迹样本。 展开更多
关键词 船舶轨迹 相似性度量 层次 核心萤火虫算法(CFA) 具有噪声基于密度空间(DBSCAN)
在线阅读 下载PDF
基于聚类的超密集网络干扰抑制方法
3
作者 姜静 侯欢欢 《西安邮电大学学报》 2019年第6期1-5,共5页
针对超密集网络系统提出了一种改进的基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的干扰抑制方法。基站利用附加判断门限条件而改进DBSCAN聚类算法,并对小区里的用户进行分组,... 针对超密集网络系统提出了一种改进的基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的干扰抑制方法。基站利用附加判断门限条件而改进DBSCAN聚类算法,并对小区里的用户进行分组,将具有相似信道特性的用户聚成一组,使不同分组用户之间的信道相关性较低。再利用比例公平调度选出每组中比例公平系数最高的用户进行传输,调度后的多个用户的空间特性不同的,从而降低空间干扰起到干扰抑制的效果。仿真结果表明,与其他相关2种方法比较,改进方法可有效地降低空间干扰,提高系统吞吐量。 展开更多
关键词 超密集网络 密度噪声应用空间算法 用户分组 干扰抑制
在线阅读 下载PDF
基于激光雷达与惯导融合的掘进机定位方法
4
作者 刘京 魏志强 +1 位作者 蔡春蒙 刘洋 《工矿自动化》 北大核心 2025年第3期78-85,95,共9页
煤矿掘进机精准定位是智能掘进的基础,但井下低光照、高粉尘等恶劣作业环境导致单一定位方法精度低、稳定性差。为提高掘进机在恶劣环境中的定位精度,提出了一种基于误差状态卡尔曼滤波(ESKF)的激光雷达与惯导融合的掘进机定位方法。首... 煤矿掘进机精准定位是智能掘进的基础,但井下低光照、高粉尘等恶劣作业环境导致单一定位方法精度低、稳定性差。为提高掘进机在恶劣环境中的定位精度,提出了一种基于误差状态卡尔曼滤波(ESKF)的激光雷达与惯导融合的掘进机定位方法。首先,以悬挂在巷道顶部的球靶中心为巷道坐标系原点,设计基于密度的噪声鲁棒空间聚类(DBSCAN)算法和基于形状特征的球靶点云提取算法,解决传统依靠反射强度区分球靶的方法在粉尘堆积时易失效的问题,结合坐标变换方法构建雷达位置测量系统以获得融合定位基准。其次,利用惯导积分得到掘进机的位置和姿态信息。然后,基于一阶高斯马尔可夫过程进行误差状态建模,采用误差状态卡尔曼滤波算法融合雷达和惯导的输出,得到掘进机在巷道中的融合定位结果,并将融合定位结果反馈给惯导,以校正其累计误差,从而获得精准的定位结果。定位试验结果表明:在掘进机静止状态下,不同位置和姿态角下雷达定位系统的位置误差小于10 cm,惯导定位系统的位置误差小于70 cm;在掘进机运动状态下,融合系统的位置误差为5.8 cm,相比雷达系统的位置误差降低了12.1%。基于激光雷达与惯导融合的掘进机定位方法可以在复杂掘进工况中满足煤矿掘进机自动截割时的定位需求。 展开更多
关键词 掘进机定位 激光雷达 惯导 误差状态卡尔曼滤波 基于密度的噪声鲁棒空间聚类算法 球靶
在线阅读 下载PDF
一种面对雷达信号分选的无参数快速聚类算法
5
作者 彭泽宇 束坤 《舰船电子对抗》 2025年第2期52-57,共6页
针对基于密度的噪声应用空间聚类(DBSCAN)算法在雷达信号预分选中需要人为设置聚类参数、对密度分布不均雷达信号聚类准确度低、计算复杂度高的问题,提出了一种基于粒子群算法和网格划分的无参数快速聚类(GPSO-DBSCAN)算法。该算法通过... 针对基于密度的噪声应用空间聚类(DBSCAN)算法在雷达信号预分选中需要人为设置聚类参数、对密度分布不均雷达信号聚类准确度低、计算复杂度高的问题,提出了一种基于粒子群算法和网格划分的无参数快速聚类(GPSO-DBSCAN)算法。该算法通过粒子群算法自适应获得DBSCAN聚类最优参数,通过网格划分和分级聚类增强了对密度分布不均雷达信号的聚类能力,并降低了计算复杂度,实现了准确、快速聚类。仿真结果表明,该算法能够自适应、准确快速完成密度分布不均雷达信号的聚类。 展开更多
关键词 雷达信号分选 基于密度的噪声应用空间算法 无参数 粒子群算法 网格单元
在线阅读 下载PDF
机载激光雷达通信网络测距大数据均衡调度
6
作者 时进 陈瑾 赵文瑄 《现代雷达》 CSCD 北大核心 2024年第12期121-126,共6页
由于机载激光雷达通信网络节点本身的通信距离有限,存在测距节点的硬件资源不均衡、节点能量有限、通信干扰等问题。对此,提出均衡聚类下的机载激光雷达测距大数据调度方法。基于小波变换中的非线性尺度变换结构对采集到的雷达测距大数... 由于机载激光雷达通信网络节点本身的通信距离有限,存在测距节点的硬件资源不均衡、节点能量有限、通信干扰等问题。对此,提出均衡聚类下的机载激光雷达测距大数据调度方法。基于小波变换中的非线性尺度变换结构对采集到的雷达测距大数据去噪处理。使用K-means++算法和局部搜索策略进行分区,使用基于密度的噪声应用空间聚类算法分析不同聚类结果的关联特征。引入自适应权重学习方法,提取输出雷达通信网络节点特征量,将原始特征向量与归一化的节点分布量化值融合,构建新的测距大数据网络调度特征向量。实验测试结果表明:所提方法在雷达通信网络测距节点调度应用中,内存使用率降低至62%以下,能耗降低至1200 J以下,执行时间降低至40 ms以下,提升了均衡聚类调度应用效果。 展开更多
关键词 机载激光雷达 测距大数据 均衡 K-means++算法 非线性尺度变换结构 基于密度的噪声应用空间算法
在线阅读 下载PDF
一种基于机载LiDAR数据的山区道路提取方法 被引量:11
7
作者 刘国栋 刘佳 刘浪 《激光技术》 CAS CSCD 北大核心 2022年第4期466-473,共8页
为了解决基于机载激光雷达(LiDAR)点云提取道路时多重特征阈值设定难、普适性低的问题,采用了随机森林分类模型提取道路点云进而获得道路中心线的方法。首先使用渐进加密三角网滤波获取地面点云,根据山区道路特性,计算地面点云各点在邻... 为了解决基于机载激光雷达(LiDAR)点云提取道路时多重特征阈值设定难、普适性低的问题,采用了随机森林分类模型提取道路点云进而获得道路中心线的方法。首先使用渐进加密三角网滤波获取地面点云,根据山区道路特性,计算地面点云各点在邻域范围的坡度、粗糙度、高差方差、点密度及反射强度,组成点的分类特征;随后手动采集正负样本训练点云随机森林分类模型,将地面点云通过模型分类得到初始道路点云;再通过基于密度的噪声应用空间聚类算法去除噪声点精化道路点云;最后矢量化道路点云获取道路中心线。结果表明,以Entiat River地区山区LiDAR点云数据进行实验验证,道路点云提取的正确率达到95.29%,完整率达到92.96%,提取质量达到88.88%。该方法能解决多重阈值难以确定的问题,能较高精度地提取到山区道路点云,进而获取有效道路中心线,对山区道路信息的研究有一定的参考价值。 展开更多
关键词 激光技术 山区道路 随机森林 激光雷达点云 基于密度的噪声应用空间算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部