为准确聚类复杂的船舶轨迹和辨识隐蔽轨迹簇,提出一种考虑多维特征的船舶轨迹分层聚类算法。用核心萤火虫算法(core firefly algorithm,CFA)解决具有噪声的基于密度的空间聚类(density-based spatial clustering of applications with n...为准确聚类复杂的船舶轨迹和辨识隐蔽轨迹簇,提出一种考虑多维特征的船舶轨迹分层聚类算法。用核心萤火虫算法(core firefly algorithm,CFA)解决具有噪声的基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的邻域查询冗余和参数敏感问题,并在传统船舶轨迹聚类特征的基础上引入水域环境、轨迹线型和时隙特征来分层建立轨迹相似性度量指标,最终实现轨迹的逐层递进聚类。以厦门港及其附近水域的AIS数据验证算法的有效性,检验结果表明:船舶轨迹由算法聚类为9簇;簇内动态时间规整(dynamic time warping,DTW)距离均值为5.199,簇间DTW距离均值为18.032;聚类结果符合实际的船舶交通流情况,聚类准确率为91.50%。可见,提出的算法相比其他常用的轨迹聚类算法能更有效地辨识轨迹地理分布和船舶运动特征的异同,更容易发现隐蔽的轨迹簇。由提出的算法聚类的同簇轨迹,其船舶运动特性更相似,聚类结果可为船舶交通流特性分析及船舶行为模式识别等提供典型的轨迹样本。展开更多
针对超密集网络系统提出了一种改进的基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的干扰抑制方法。基站利用附加判断门限条件而改进DBSCAN聚类算法,并对小区里的用户进行分组,...针对超密集网络系统提出了一种改进的基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的干扰抑制方法。基站利用附加判断门限条件而改进DBSCAN聚类算法,并对小区里的用户进行分组,将具有相似信道特性的用户聚成一组,使不同分组用户之间的信道相关性较低。再利用比例公平调度选出每组中比例公平系数最高的用户进行传输,调度后的多个用户的空间特性不同的,从而降低空间干扰起到干扰抑制的效果。仿真结果表明,与其他相关2种方法比较,改进方法可有效地降低空间干扰,提高系统吞吐量。展开更多
文摘为准确聚类复杂的船舶轨迹和辨识隐蔽轨迹簇,提出一种考虑多维特征的船舶轨迹分层聚类算法。用核心萤火虫算法(core firefly algorithm,CFA)解决具有噪声的基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的邻域查询冗余和参数敏感问题,并在传统船舶轨迹聚类特征的基础上引入水域环境、轨迹线型和时隙特征来分层建立轨迹相似性度量指标,最终实现轨迹的逐层递进聚类。以厦门港及其附近水域的AIS数据验证算法的有效性,检验结果表明:船舶轨迹由算法聚类为9簇;簇内动态时间规整(dynamic time warping,DTW)距离均值为5.199,簇间DTW距离均值为18.032;聚类结果符合实际的船舶交通流情况,聚类准确率为91.50%。可见,提出的算法相比其他常用的轨迹聚类算法能更有效地辨识轨迹地理分布和船舶运动特征的异同,更容易发现隐蔽的轨迹簇。由提出的算法聚类的同簇轨迹,其船舶运动特性更相似,聚类结果可为船舶交通流特性分析及船舶行为模式识别等提供典型的轨迹样本。
文摘针对超密集网络系统提出了一种改进的基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的干扰抑制方法。基站利用附加判断门限条件而改进DBSCAN聚类算法,并对小区里的用户进行分组,将具有相似信道特性的用户聚成一组,使不同分组用户之间的信道相关性较低。再利用比例公平调度选出每组中比例公平系数最高的用户进行传输,调度后的多个用户的空间特性不同的,从而降低空间干扰起到干扰抑制的效果。仿真结果表明,与其他相关2种方法比较,改进方法可有效地降低空间干扰,提高系统吞吐量。