针对低剂量CT图像质量退化问题,提出了一种基于投影域数据恢复的低剂量CT优质重建方法。新方法首先通过非线性Anscombe变换将满足Poisson分布的投影域数据转化Gaussian型分布,然后利用针对Anscombe变换的Gaussian型数据进行自适应Block-...针对低剂量CT图像质量退化问题,提出了一种基于投影域数据恢复的低剂量CT优质重建方法。新方法首先通过非线性Anscombe变换将满足Poisson分布的投影域数据转化Gaussian型分布,然后利用针对Anscombe变换的Gaussian型数据进行自适应Block-Matchingand 3D filtering(BM3D)滤波,最后通过对Anscombe逆变换数据执行传统的滤波反投影(Filtered Back Projec-tion,FBP)CT重建。由于Anscombe变换数据的方差已知,且所用BM3D滤波无需人工设置滤波参数,使得方法可实现自适应低剂量CT图像重建。仿真和临床低剂量CT数据的实验表明,方法具有良好的重建鲁棒性,其重建图像的噪声和伪影可同时得到有效抑制。展开更多
目的为了有效消除噪声图像中的椒盐噪声、高斯噪声甚至混合噪声,改进三维块匹配算法,提出一种新的图像去噪算法。方法首先,该算法将含噪声图像用图像块之间的相似性构建三维矩阵。然后,在图像块之间进行硬阈值滤波降低噪声,对图像块集...目的为了有效消除噪声图像中的椒盐噪声、高斯噪声甚至混合噪声,改进三维块匹配算法,提出一种新的图像去噪算法。方法首先,该算法将含噪声图像用图像块之间的相似性构建三维矩阵。然后,在图像块之间进行硬阈值滤波降低噪声,对图像块集合加权平均重建得到初步估计去噪图像。最后,对初步估计结果图像进行块匹配,在图像块内和图像块之间进行维纳滤波和加权中值滤波,得到最终去噪图像。结果仿真结果表明,该算法对图像采集的常见噪声均表现出理想的去噪效果,PSNR值均大于31 d B。对比维纳滤波、中值滤波、硬阈值小波滤波,文中算法对高斯噪声、椒盐噪声和混合噪声的去噪结果 PSNR值为31.5334~36.6466 d B,均高于其他算法,最高差值达到12.08 d B。结论结合中值滤波和三维块匹配算法的图像去噪算法,能够较好去除噪声图像的多种类型噪声,是一种较为优秀的去噪算法。展开更多
文摘针对低剂量CT图像质量退化问题,提出了一种基于投影域数据恢复的低剂量CT优质重建方法。新方法首先通过非线性Anscombe变换将满足Poisson分布的投影域数据转化Gaussian型分布,然后利用针对Anscombe变换的Gaussian型数据进行自适应Block-Matchingand 3D filtering(BM3D)滤波,最后通过对Anscombe逆变换数据执行传统的滤波反投影(Filtered Back Projec-tion,FBP)CT重建。由于Anscombe变换数据的方差已知,且所用BM3D滤波无需人工设置滤波参数,使得方法可实现自适应低剂量CT图像重建。仿真和临床低剂量CT数据的实验表明,方法具有良好的重建鲁棒性,其重建图像的噪声和伪影可同时得到有效抑制。
文摘目的为了有效消除噪声图像中的椒盐噪声、高斯噪声甚至混合噪声,改进三维块匹配算法,提出一种新的图像去噪算法。方法首先,该算法将含噪声图像用图像块之间的相似性构建三维矩阵。然后,在图像块之间进行硬阈值滤波降低噪声,对图像块集合加权平均重建得到初步估计去噪图像。最后,对初步估计结果图像进行块匹配,在图像块内和图像块之间进行维纳滤波和加权中值滤波,得到最终去噪图像。结果仿真结果表明,该算法对图像采集的常见噪声均表现出理想的去噪效果,PSNR值均大于31 d B。对比维纳滤波、中值滤波、硬阈值小波滤波,文中算法对高斯噪声、椒盐噪声和混合噪声的去噪结果 PSNR值为31.5334~36.6466 d B,均高于其他算法,最高差值达到12.08 d B。结论结合中值滤波和三维块匹配算法的图像去噪算法,能够较好去除噪声图像的多种类型噪声,是一种较为优秀的去噪算法。