期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于局部特征尺度分解谱熵和VPMCD的液压泵退化状态识别 被引量:5
1
作者 王余奎 李洪儒 +1 位作者 魏晓斌 许葆华 《振动与冲击》 EI CSCD 北大核心 2016年第12期189-196,共8页
针对液压泵故障信号的非平稳特性以及其退化状态难以识别的问题,结合局部特征尺度分解与信息熵理论,提出了局部特征尺度分解谱熵的退化特征提取方法,并将基于变量预测模型的模式识别(Variable Predictive Model based Class Discriminat... 针对液压泵故障信号的非平稳特性以及其退化状态难以识别的问题,结合局部特征尺度分解与信息熵理论,提出了局部特征尺度分解谱熵的退化特征提取方法,并将基于变量预测模型的模式识别(Variable Predictive Model based Class Discriminate,VPMCD)方法引入到液压泵的退化状态识别。对不同程度故障的液压泵振动信号进行局部特征尺度分解,从得到的内禀尺度分量中提取振动信号的复杂度和随机性度量指标能谱熵、奇异谱熵和包络谱熵,以其作为液压泵的退化特征向量,通过建立VPMCD退化状态识别模型实现液压泵的退化状态识别。仿真信号分析结果验证了所提出的局部特征尺度分解谱熵具有较好的表征液压泵故障退化状态的能力。通过对实测液压泵松靴和滑靴磨损两种故障模式下的退化状态振动信号进行分析验证了提出方法的有效性。 展开更多
关键词 液压泵 退化状态识别 局部特征尺度分解 谱熵 变量预测模型的模式识别
在线阅读 下载PDF
基于PSODACCIW-VPMCD的滚动轴承智能检测方法 被引量:3
2
作者 刘吉彪 程军圣 马利 《振动与冲击》 EI CSCD 北大核心 2015年第23期42-47,共6页
针对VPMCD中模型选择方法的不合理和小样本多分类时识别率降低的缺陷,结合动态加速常数协同惯性权重的粒子群(Particle swarm optimization with dynamic accelerating constant and coordinating with inertia weight,PSODACCIW)算法... 针对VPMCD中模型选择方法的不合理和小样本多分类时识别率降低的缺陷,结合动态加速常数协同惯性权重的粒子群(Particle swarm optimization with dynamic accelerating constant and coordinating with inertia weight,PSODACCIW)算法的全局优化能力和加权融合理论,提出基于PSODACCIW-VPMCD的滚动轴承智能检测方法。首先对样本提取特征变量,然后采用PSODACCIW算法优化诊断融合权值矩阵,最后对滚动轴承的故障类型和工作状态进行分类和识别。实验结果表明,该方法能够有效地应用于滚动轴承的智能检测中。 展开更多
关键词 动态加速常数协同惯性权重的粒子群算法(PSODACCIW) 基于变量预测模型的模式识别(vpmcd) 加权融合 滚动轴承 智能检测
在线阅读 下载PDF
基于改进多项式响应面的VPMCD方法及其在滚动轴承故障诊断中的应用 被引量:2
3
作者 杨宇 潘海洋 +1 位作者 李杰 程军圣 《振动与冲击》 EI CSCD 北大核心 2014年第19期157-163,共7页
基于变量预测模型的模式识别(Variable predictive model based class discriminate,简称VPMCD)方法在训练过程中是用多项式响应面(Polynomial Response Surface,简称PRS)法来建立预测模型的,然而PRS法的模型拟合精度不能随训练样本容... 基于变量预测模型的模式识别(Variable predictive model based class discriminate,简称VPMCD)方法在训练过程中是用多项式响应面(Polynomial Response Surface,简称PRS)法来建立预测模型的,然而PRS法的模型拟合精度不能随训练样本容量的增加而显著提高。针对这一缺陷,将原方法中的PRS方法进行了改进,提出了基于改进多项式响应面(Improved Polynomial Response Surface,简称IPRS)的VPMCD方法,并将其应用于滚动轴承故障诊断。通过实验,将原方法和改进方法在训练样本容量不同情况下的模式分类精度进行对比,结果表明,相对于原VPMCD方法,改进的VPMCD方法不仅具有更好的模式分类效果,而且其分类精度随训练样本容量的增加提高得更明显。 展开更多
关键词 基于变量预测模型的模式识别 改进的多项式响应面 滚动轴承 故障诊断
在线阅读 下载PDF
基于VPMELM的滚动轴承劣化状态辨识方法 被引量:8
4
作者 郑近德 潘海洋 +1 位作者 童宝宏 张良安 《振动与冲击》 EI CSCD 北大核心 2017年第7期57-61,共5页
针对变量预测模型模式识别方法(VPMCD)仅仅包含几种简单数学模型的问题,所建立的预测模型不足以反映特征值之间的复杂关系;极限学习机(ELM)回归模型是一种复杂且被广泛应用的模型,其模型可以反映特征之间的相互关系。结合极限学习机回... 针对变量预测模型模式识别方法(VPMCD)仅仅包含几种简单数学模型的问题,所建立的预测模型不足以反映特征值之间的复杂关系;极限学习机(ELM)回归模型是一种复杂且被广泛应用的模型,其模型可以反映特征之间的相互关系。结合极限学习机回归模型和VPMCD方法的优点,提出了一种基于极限学习机的变量预测模型(VPMELM)模式识别方法,并将该方法应用于滚动轴承劣化状态实验中。实验表明,基于VPMELM的辨识方法可以有效地对滚动轴承的劣化状态进行识别。 展开更多
关键词 极限学习机 变量预测模式识别方法 基于极限学习机的变量预测模型 滚动轴承
在线阅读 下载PDF
基于参数优化VMD和增强多尺度排列熵的单向阀故障诊断 被引量:24
5
作者 潘震 黄国勇 吴漫 《振动与冲击》 EI CSCD 北大核心 2020年第15期118-125,共8页
针对高压隔膜泵机械结构复杂,单向阀故障特征信息分布在多尺度上,单一尺度难以全面提取特征的问题,提出了一种基于参数优化变分模态分解(Variational Mode Decomposition,VMD)和增强多尺度排列熵(Enhanced Multi-scale Permutation Entr... 针对高压隔膜泵机械结构复杂,单向阀故障特征信息分布在多尺度上,单一尺度难以全面提取特征的问题,提出了一种基于参数优化变分模态分解(Variational Mode Decomposition,VMD)和增强多尺度排列熵(Enhanced Multi-scale Permutation Entropy,EMPE)的单向阀故障诊断方法。对单向阀振动信号进行VMD分解,以包络熵最小原则对其进行参数优化,获得既定的若干本征模态函数(Intrinsic Mode Function,IMF)分量;计算IMF分量的增强多尺度排列熵,构建故障特征值向量;利用基于变量预测模型的模式识别(Variable Predictive Model Based Class Discriminate,VPMCD)方法对故障特征值向量进行训练和识别,进而实现单向阀的故障诊断。仿真信号和工程实验分析表明,该方法可以准确地识别单向阀的故障类型,具有一定的可靠性和工程应用价值。 展开更多
关键词 变分模态分解 增强多尺度排列熵 基于变量预测模型的模式识别 单向阀 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部