为解决语音增强任务中语音信息未充分利用的问题,提出一种基于深度学习的方法,即融合精确比值掩蔽的门控扩张循环卷积神经网络(gate-dilated recurrent convolutional neural network with accurate ratio masking, GDRCNN-ARM)。GDRCN...为解决语音增强任务中语音信息未充分利用的问题,提出一种基于深度学习的方法,即融合精确比值掩蔽的门控扩张循环卷积神经网络(gate-dilated recurrent convolutional neural network with accurate ratio masking, GDRCNN-ARM)。GDRCNN由编码器、循环卷积层和解码器3部分组成,编码器中借助扩张卷积和门控机制实现对上下文语音信息的捕获,进行并行处理;循环卷积层采用GRU且引入多头注意力机制,捕捉网络中的长期依赖关系;解码器采用逐层解码且通过跳跃连接进行编码器信息的复用,实现对语音细节的还原。实验数据表明,GDRCNN网络在参数量和模型大小方面明显优于DNN、CRN等网络,PESQ平均提高了0.612、0.158,STOI平均提高了0.072、0.020,在语音增强和泛化方面表现出色。展开更多
针对石灰石-石膏湿法烟气脱硫系统(wet flue gas desulfurization, WFGD)工作过程中浆液pH难以精准测量、不利于WFGD作业的问题,建立一种基于双向门控循环单元的脱硫系统pH预测模型。首先,对原始数据进行清洗和归一化处理;其次,基于最...针对石灰石-石膏湿法烟气脱硫系统(wet flue gas desulfurization, WFGD)工作过程中浆液pH难以精准测量、不利于WFGD作业的问题,建立一种基于双向门控循环单元的脱硫系统pH预测模型。首先,对原始数据进行清洗和归一化处理;其次,基于最大信息系数分析得出13个特征值为输入变量,pH为输出变量,并建立浆液pH模型;最后,运行模型,并对结果进行评价。研究结果显示,与长短期记忆和门控循环相比,所选用的数学模型的平均绝对误差分别下降了11.95%、24.92%,均方根误差分别下降了10.64%、19.49%,决定系数分别提高了1.79%、3.08%。表明基于双向门控循环单元的pH预测模型具有较高的精确度和稳定性,具有工程应用价值,为现有脱硫塔pH预测模型提供了工程参考。展开更多
文摘为解决语音增强任务中语音信息未充分利用的问题,提出一种基于深度学习的方法,即融合精确比值掩蔽的门控扩张循环卷积神经网络(gate-dilated recurrent convolutional neural network with accurate ratio masking, GDRCNN-ARM)。GDRCNN由编码器、循环卷积层和解码器3部分组成,编码器中借助扩张卷积和门控机制实现对上下文语音信息的捕获,进行并行处理;循环卷积层采用GRU且引入多头注意力机制,捕捉网络中的长期依赖关系;解码器采用逐层解码且通过跳跃连接进行编码器信息的复用,实现对语音细节的还原。实验数据表明,GDRCNN网络在参数量和模型大小方面明显优于DNN、CRN等网络,PESQ平均提高了0.612、0.158,STOI平均提高了0.072、0.020,在语音增强和泛化方面表现出色。
文摘针对石灰石-石膏湿法烟气脱硫系统(wet flue gas desulfurization, WFGD)工作过程中浆液pH难以精准测量、不利于WFGD作业的问题,建立一种基于双向门控循环单元的脱硫系统pH预测模型。首先,对原始数据进行清洗和归一化处理;其次,基于最大信息系数分析得出13个特征值为输入变量,pH为输出变量,并建立浆液pH模型;最后,运行模型,并对结果进行评价。研究结果显示,与长短期记忆和门控循环相比,所选用的数学模型的平均绝对误差分别下降了11.95%、24.92%,均方根误差分别下降了10.64%、19.49%,决定系数分别提高了1.79%、3.08%。表明基于双向门控循环单元的pH预测模型具有较高的精确度和稳定性,具有工程应用价值,为现有脱硫塔pH预测模型提供了工程参考。