高光谱图像以其高分辨率的空间和光谱信息在军事、航空航天及民用等遥感领域均有重要应用,具有重要的研究意义。深度学习具有学习能力强、覆盖范围广及可移植性强的优势,成为目前高精度高光谱图像分类技术研究的热点。其中卷积神经网络(...高光谱图像以其高分辨率的空间和光谱信息在军事、航空航天及民用等遥感领域均有重要应用,具有重要的研究意义。深度学习具有学习能力强、覆盖范围广及可移植性强的优势,成为目前高精度高光谱图像分类技术研究的热点。其中卷积神经网络(CNN)因强大的特征提取能力广泛应用于高光谱图像分类方法研究中,取得了有效的研究成果,但该类方法通常单独基于2D-CNN或3D-CNN进行,针对高光谱图像的单一特征,一是不能充分利用高光谱数据本身完整的特征信息;二是虽然相应提取网络局部特征优化性好,但是整体泛化能力不足,在深度挖掘HSI的空间和光谱信息方面存在局限性。鉴于此,提出了基于注意力机制的混合卷积神经网络模型(HybridSN_AM),使用主成分分析法对高光谱图像进行降维,采用卷积神经网络作为分类模型的主体,通过注意力机制筛选出更有区分度的特征,使模型能够提取到更精确、更核心的空间-光谱信息,实现高光谱图像的高精度分类。对Indian Pines(IP)、University of Pavia(UP)和Salinas(SA)三个数据集进行了应用实验,结果表明,基于该模型的目标图像总体分类精度、平均分类精度和Kappa系数均高于98.14%、97.17%、97.87%。与常规HybridSN模型对比表明,HybridSN_AM模型在三个数据集上的分类精度分别提升了0.89%、0.07%和0.73%。有效解决了高光谱图像空间-光谱特征提取与融合的难题,提高HSI分类的精度,具有较强的泛化能力,充分验证了注意力机制结合混合卷积神经网络在高光谱图像分类中的有效性和可行性,对高光谱图像分类技术的发展及应用具有重要的科学价值。展开更多
【目的】设计MobileNet with large convolution Unit(Mobile-LU)模型,解决由于辣椒病害种类复杂和类间差异不明显而造成的病害识别困难、准确率低等问题。【方法】重新构建MobileNetV3的特征提取层,在并行分支单元结构中采用不同尺度...【目的】设计MobileNet with large convolution Unit(Mobile-LU)模型,解决由于辣椒病害种类复杂和类间差异不明显而造成的病害识别困难、准确率低等问题。【方法】重新构建MobileNetV3的特征提取层,在并行分支单元结构中采用不同尺度的分离卷积,增强模型对辣椒病害尺寸差异特征的表达能力;引入Squeeze-and-Excitation(SE)注意力机制,加强模型对病害相关的特征的学习,提高病害识别准确率;同时使用Leaky ReLU激活函数,在负值区域引入小的斜率,避免网络神经元死亡问题;调整输出层节点个数,更好适应辣椒病害分类任务。【结果】Mobile-LU模型的识别准确率达到98.2%,相较于MobilenetV3-small、ResNet34、VGG16、Alexnet、Swin Transformer、MobileVIT等模型分别高出8.9、7.3、4.4、20.4、6.0、8.3个百分点,且Mobile-LU模型在精确率、召回率、特异度以及F1分数等关键性能指标上也均有优势。【结论】Mobile-LU模型对辣椒病害的识别性能更优,能更好满足辣椒病害识别任务。展开更多
在基于深度学习的三维点云语义分割算法中,为了加强提取局部特征细粒度能力和学习不同局部邻域之间的长程依赖性,提出一种基于注意力机制和全局特征优化的神经网络。首先,通过加性注意力的形式设计单通道注意力(SCA)模块和点注意力(PA)...在基于深度学习的三维点云语义分割算法中,为了加强提取局部特征细粒度能力和学习不同局部邻域之间的长程依赖性,提出一种基于注意力机制和全局特征优化的神经网络。首先,通过加性注意力的形式设计单通道注意力(SCA)模块和点注意力(PA)模块,前者通过自适应调节单通道中各点特征加强对局部特征的分辨能力,后者通过调节单点特征向量之间的重要程度抑制无用特征并减少特征冗余;其次,加入全局特征聚合(GFA)模块,聚合各局部邻域特征,以捕获全局上下文信息,从而提高语义分割精度。实验结果表明,在点云数据集S3DIS上,所提网络的平均交并比(mIoU)相较于RandLA-Net(Random sampling and an effective Local feature Aggregator Network)提升了1.8个百分点,分割性能良好,具有较好的适应性。展开更多
文摘高光谱图像以其高分辨率的空间和光谱信息在军事、航空航天及民用等遥感领域均有重要应用,具有重要的研究意义。深度学习具有学习能力强、覆盖范围广及可移植性强的优势,成为目前高精度高光谱图像分类技术研究的热点。其中卷积神经网络(CNN)因强大的特征提取能力广泛应用于高光谱图像分类方法研究中,取得了有效的研究成果,但该类方法通常单独基于2D-CNN或3D-CNN进行,针对高光谱图像的单一特征,一是不能充分利用高光谱数据本身完整的特征信息;二是虽然相应提取网络局部特征优化性好,但是整体泛化能力不足,在深度挖掘HSI的空间和光谱信息方面存在局限性。鉴于此,提出了基于注意力机制的混合卷积神经网络模型(HybridSN_AM),使用主成分分析法对高光谱图像进行降维,采用卷积神经网络作为分类模型的主体,通过注意力机制筛选出更有区分度的特征,使模型能够提取到更精确、更核心的空间-光谱信息,实现高光谱图像的高精度分类。对Indian Pines(IP)、University of Pavia(UP)和Salinas(SA)三个数据集进行了应用实验,结果表明,基于该模型的目标图像总体分类精度、平均分类精度和Kappa系数均高于98.14%、97.17%、97.87%。与常规HybridSN模型对比表明,HybridSN_AM模型在三个数据集上的分类精度分别提升了0.89%、0.07%和0.73%。有效解决了高光谱图像空间-光谱特征提取与融合的难题,提高HSI分类的精度,具有较强的泛化能力,充分验证了注意力机制结合混合卷积神经网络在高光谱图像分类中的有效性和可行性,对高光谱图像分类技术的发展及应用具有重要的科学价值。
文摘【目的】设计MobileNet with large convolution Unit(Mobile-LU)模型,解决由于辣椒病害种类复杂和类间差异不明显而造成的病害识别困难、准确率低等问题。【方法】重新构建MobileNetV3的特征提取层,在并行分支单元结构中采用不同尺度的分离卷积,增强模型对辣椒病害尺寸差异特征的表达能力;引入Squeeze-and-Excitation(SE)注意力机制,加强模型对病害相关的特征的学习,提高病害识别准确率;同时使用Leaky ReLU激活函数,在负值区域引入小的斜率,避免网络神经元死亡问题;调整输出层节点个数,更好适应辣椒病害分类任务。【结果】Mobile-LU模型的识别准确率达到98.2%,相较于MobilenetV3-small、ResNet34、VGG16、Alexnet、Swin Transformer、MobileVIT等模型分别高出8.9、7.3、4.4、20.4、6.0、8.3个百分点,且Mobile-LU模型在精确率、召回率、特异度以及F1分数等关键性能指标上也均有优势。【结论】Mobile-LU模型对辣椒病害的识别性能更优,能更好满足辣椒病害识别任务。
文摘在基于深度学习的三维点云语义分割算法中,为了加强提取局部特征细粒度能力和学习不同局部邻域之间的长程依赖性,提出一种基于注意力机制和全局特征优化的神经网络。首先,通过加性注意力的形式设计单通道注意力(SCA)模块和点注意力(PA)模块,前者通过自适应调节单通道中各点特征加强对局部特征的分辨能力,后者通过调节单点特征向量之间的重要程度抑制无用特征并减少特征冗余;其次,加入全局特征聚合(GFA)模块,聚合各局部邻域特征,以捕获全局上下文信息,从而提高语义分割精度。实验结果表明,在点云数据集S3DIS上,所提网络的平均交并比(mIoU)相较于RandLA-Net(Random sampling and an effective Local feature Aggregator Network)提升了1.8个百分点,分割性能良好,具有较好的适应性。
文摘针对盾构姿态预测模型存在易过拟合、预测精度低的问题,提出一种基于融合注意力机制的盾构姿态组合预测模型。为强化有效特征的提取,抑制冗余特征信息的表达,引入基于选择性卷积核网络(selective kernel networks,SKNet)的特征注意力机制提取网络,消除固定尺寸卷积核带来的限制,并自适应形成带有注意力的特征映射。为更好地捕捉长期信息和特征模式,通过双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)、门控循环单元(gated recurrent unit, GRU)得到2组隐含输出结果,再利用多头注意力机制,捕获组合模型输出的隐含特征与模型输出的盾构姿态之间的依赖关系,进一步提高预测模型对重要隐含特征的信息抓捕能力;同时,为解决地质勘察钻孔数据连续性差、精确性不足,难以应用于机器学习模型训练的问题,将基于人工先验知识的二级特征引入模型特征输入,提升模型对地层信息的感知能力。最后,基于广州地铁12号线官洲站—大学城北站盾构实例,对模型不同参数结构下的性能进行研究,并进行对比试验验证模型性能,采用可解释性试验评估特征对预测结果的影响。试验结果表明,相比其他预测模型,所提出的预测模型优越性更好,预测精度更高,解决了长时间序列高特征维度数据在传统模型下易过拟合且预测精度较低的问题。