期刊文献+
共找到617篇文章
< 1 2 31 >
每页显示 20 50 100
基于区域全卷积网络的变电站识别监控技术
1
作者 张亚平 王楚源 程泓博 《沈阳工业大学学报》 北大核心 2025年第4期439-447,共9页
【目的】变电站作为电力传输和分配的核心枢纽,其安全稳定运行是保障电力系统高效、可靠供电的关键。然而,传统的变电站监控方式存在自动监控能力有限、目标监测精度欠佳等问题,难以满足当下电力系统日益增长的安全需求。本研究致力于... 【目的】变电站作为电力传输和分配的核心枢纽,其安全稳定运行是保障电力系统高效、可靠供电的关键。然而,传统的变电站监控方式存在自动监控能力有限、目标监测精度欠佳等问题,难以满足当下电力系统日益增长的安全需求。本研究致力于开发一种基于区域全卷积网络(R-FCN)的变电站目标识别与安全监控技术,旨在攻克传统监控方式的短板,大幅提升变电站安全保障的整体水平,为电力系统的稳健运行筑牢根基。【方法】方法融合了区域提取和全卷积网络的独特优势,构建起一套高效智能的监控体系。在数据采集环节,部署高清视频监控摄像头,从多个角度全方位、不间断地实时捕捉变电站内的图像数据,为后续的深度分析提供海量且精准的原始素材。针对采集到的图像,运用先进的R-FCN模型进行目标检测。R-FCN凭借其全卷积特性在处理不同尺寸的图像时能够巧妙地维持特征图的高分辨率,避免了传统方法在降采样过程中容易出现的信息丢失问题,极大地提高了目标监测的精度。同时,精心设计并引入区域提取模块,该模块犹如智能导航系统,能够在错综复杂的变电站背景中,精准定位各类关键设施,确保对设备的运行状态进行实时、精准的监测。对于异常行为,如人员未经授权闯入危险区域、设备突发冒烟起火等,也能及时察觉,为后续的应急处置争取宝贵时间。【结果】通过大量的模拟实验以及在实际变电站监控场景中的测试验证,本系统展现出了卓越的性能表现。在与传统目标监测方法的对比实验中,本系统的目标监测准确率相较于传统方法有了显著提升,有效提高了监控的可靠性,避免了不必要的人力、物力。【结论】基于R-FCN的变电站目标识别与安全监控技术,兼具高效的实时处理能力和精准的目标定位能力。在面对海量监控数据时,能够迅速做出响应,快速准确地识别各类目标和异常情况,为电力系统的安全稳定运行提供了强有力的技术支撑,对提升变电站整体监控水平、保障电力系统的可靠供电具有深远意义。 展开更多
关键词 视频监控 目标检测 烟雾检测 区域卷积网络 变电站 监控 异常行为监测 智能监控体系
在线阅读 下载PDF
基于卷积神经网络的仿刺参(Apostichopus japonicus)疣足全基因组选择初步研究
2
作者 林涛 倪萍 +4 位作者 包晓凯 李宇泽 韩泠姝 丁君 王扬帆 《海洋通报》 北大核心 2025年第2期186-195,共10页
仿刺参(Apostichopus japonicus)是山东省和辽宁省的支柱水产种类之一。全基因组选择(Genomic Seletion,GS)分子育种以高效率、高准确率等优势,将农业生物育种推向了新的发展阶段。目前,传统家系育种仍是刺参良种选育的主要手段,发展适... 仿刺参(Apostichopus japonicus)是山东省和辽宁省的支柱水产种类之一。全基因组选择(Genomic Seletion,GS)分子育种以高效率、高准确率等优势,将农业生物育种推向了新的发展阶段。目前,传统家系育种仍是刺参良种选育的主要手段,发展适用于刺参的全基因组选择技术是刺参良种选育的未来重点发展方向,具有重要研究价值。卷积深层神经网络(Convolutional Neural Network,CNN)已经应用在基因互作效应的估计中,解决全基因组选择主流GBLUP方法无法估计基因互作的非加性效应的问题。本研究以仿刺参的重要经济性状疣足为表型,使用52271个SNP基因型,探究了GBLUP和CNN育种值估计的差异。结果表明,在仿刺参疣足数量的遗传力为0.611的情况下,相比于GBLUP方法的预测准确率(0.56363),CNN方法的预测准确率(0.83485)更高,表明基于CNN学习SNP之间潜在的基因互作信息,提高了育种值估计的准确率。本研究首次将CNN用于仿刺参疣足性状的全基因组选择中,研究结果为仿刺参生长性状的分子育种提供了理论支撑。 展开更多
关键词 仿刺参 基因组选择 卷积神经网络 疣足数量
在线阅读 下载PDF
全卷积定位神经网络在两个地震相互干扰情形下的应用
3
作者 陈慧慧 张雄 +1 位作者 田宵 张伟 《地球物理学报》 北大核心 2025年第1期139-152,共14页
台站连续记录的弱余震或微震数据中经常会遇到两个地震发生的时间比较接近,波形存在互相干扰的情况,给震相拾取和关联等处理造成困难,进而影响地震定位结果.近年来,人们开始探索使用深度学习方法直接从波形数据中定位地震,但鲜有对两个... 台站连续记录的弱余震或微震数据中经常会遇到两个地震发生的时间比较接近,波形存在互相干扰的情况,给震相拾取和关联等处理造成困难,进而影响地震定位结果.近年来,人们开始探索使用深度学习方法直接从波形数据中定位地震,但鲜有对两个波形相互干扰的地震进行定位的情况.本研究基于全卷积神经网络模型,采用叠加两个高斯概率分布的方法,同时标记两个地震,使得同一时窗内存在两个波形相互干扰的地震事件时,神经网络能够同时定位两个地震事件.我们将该方法应用于美国南加州的Ridgecrest地震序列和样本,研究发现输入时窗只包含一个地震事件时,实际数据定位平均误差为2.8 km,当输出标签包含两个地震时,我们利用输出标签减去其中一个地震位置波峰的方法提取出两个地震的位置,估算出的干扰地震事件定位平均误差为7.9 km (定位范围89 km×72 km,包含了位置提取方法的误差).测试表明,该方法对两个波形相互干扰的地震进行定位具有一定的效果,对多事件相互干扰的定位研究具有一定启发意义,从而进一步提高地震监测的完备性. 展开更多
关键词 地震定位 相互干扰 卷积神经网络
在线阅读 下载PDF
基于全卷积网络的复杂背景红外弱小目标检测研究 被引量:2
4
作者 关晓丹 郑东平 肖成 《激光杂志》 CAS 北大核心 2024年第4期254-258,共5页
针对复杂背景红外弱小目标检测过程中存在的检测误差率高,检测时间过长等问题,提出基于全卷积网络的复杂背景红外弱小目标检测方法。分析复杂背景红外弱小目标检测的研究进展,找出不同方法的缺陷,采集红外图像,提取目标检测特征,并采用... 针对复杂背景红外弱小目标检测过程中存在的检测误差率高,检测时间过长等问题,提出基于全卷积网络的复杂背景红外弱小目标检测方法。分析复杂背景红外弱小目标检测的研究进展,找出不同方法的缺陷,采集红外图像,提取目标检测特征,并采用全卷积网络设计弱小目标检测的分类器,实现复杂背景红外弱小目标检测。实验结果表明,该方法的复杂背景红外弱小目标检测精度超过97%,具有较高的实际应用价值。 展开更多
关键词 卷积网络 红外弱小目标 检测精度 提取特征
在线阅读 下载PDF
基于全卷积神经网络多任务学习的时域语音分离 被引量:1
5
作者 孙林慧 王春艳 张蒙 《信号处理》 CSCD 北大核心 2024年第12期2228-2237,共10页
基于深度神经网络时频掩码进行语音分离时,目标信号相位一般采用混合信号的相位谱,且对性别组合缺乏针对性处理,这导致分离语音的质量不佳。针对该问题,本文提出一种基于全卷积神经网络联合性别组合检测(Fully Convolutional Neural Net... 基于深度神经网络时频掩码进行语音分离时,目标信号相位一般采用混合信号的相位谱,且对性别组合缺乏针对性处理,这导致分离语音的质量不佳。针对该问题,本文提出一种基于全卷积神经网络联合性别组合检测(Fully Convolutional Neural Network-Gender Combination Detection,FCN-GCD)多任务学习的时域语音分离方法。该方法首先在语音分离支路构建全卷积神经网络,该网络的输入为时域两人混合语音信号,输出为目标讲话者的纯净语音信号,运用卷积编码器和反卷积解码器对特征进行压缩和重建,实现端到端的语音分离。其次将混合语音性别组合检测任务整合到语音分离网络中,在两个任务联合约束下获取辅助信息特征和语音分离特征,并将这些深度特征相结合来提升语音分离质量。该FCN-GCD方法是一种时域语音分离方法,不需要进行相位恢复和频域到时域的重构,相比频域处理方法,该处理过程简单,从而提高了运算效率。另外,该方法从混合语音性别组合检测任务中提取有效的辅助信息特征,利用联合特征实现了更有效的语音分离。实验结果表明,与单任务的语音分离方法相比,本文所提出的FCN-GCD方法在男男、女女和男女三种性别组合下均有效提高了语音质量,在语音质量感知评估(Perceptual Evaluation of Speech Quality,PESQ)、短时客观可懂度(Short-Time Objective Intelligibility,STOI)、信号干扰比(Signalto-Interference Ratio,SIR)、信号失真比(Signal-to-Distortion Ratio,SDR)和信号伪像比(Signal-to-Artifact Ratio,SAR)评价指标上均获得更佳的表现。 展开更多
关键词 深度神经网络 语音分离 卷积神经网络 特征融合 多任务学习
在线阅读 下载PDF
基于加权多层卷积神经网络模型的冬奥会场区滑坡易发性评价 被引量:1
6
作者 胡文杰 李峰 +1 位作者 张梅东 刘文龙 《工程地质学报》 北大核心 2025年第3期949-958,共10页
开展冬奥会地区滑坡易发性评价对于冬奥会场馆的运维风险管理具有重要意义。本文以冬奥会6个区县为研究对象,从地形地貌、地质构造、水文、人类活动和土壤植被5个方面构建冬奥会地区滑坡易发性评价指标体系,针对易发性因子权重需反复多... 开展冬奥会地区滑坡易发性评价对于冬奥会场馆的运维风险管理具有重要意义。本文以冬奥会6个区县为研究对象,从地形地貌、地质构造、水文、人类活动和土壤植被5个方面构建冬奥会地区滑坡易发性评价指标体系,针对易发性因子权重需反复多次调整的繁琐过程、过多的池化层造成特征信息大量丢失等问题,提出影响因子权重自适应学习、扩张卷积层替换池化层的加权多层卷积神经网络(Weighted Multi-CNN,WM-CNN)用于滑坡易发性预测。运用加权多层卷积神经网络、一维卷积神经网络(CNN-1D)、卷积神经网络(CNN)、支持向量机(SVM)、随机森林模型(RF)分别构建该区域的滑坡易发性评价模型。对冬奥会地区进行滑坡易发性区划,并通过受试者工作特征曲线(ROC)。结果表明,WM-CNN模型预测效果最好,高于CNN-1D模型的0.835、CNN模型的0.877、SVM模型的0.819、RF模型的0.884。此外,研究区域极高易发区和高易发区集中在北京的延庆区,大多分布在道路两侧和山谷地带。国家跳台滑雪中心和延庆奥运村位于中等易发区,滑坡风险较大,因此需要重点监控。 展开更多
关键词 冬奥会区域 加权多层 卷积神经网络 深度学习 滑坡易发性
在线阅读 下载PDF
基于融合卷积神经网络的车辆多目标检测方法 被引量:1
7
作者 曹佳 郑秋梅 段泓舟 《激光杂志》 北大核心 2025年第1期208-213,共6页
在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两... 在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两侧区域,将车道线以内的区域作为车辆多目标检测初始感兴趣区域(ROI),在ROI中采用车底阴影假设区域分割法获取车辆检测目标的假设区域。在原始卷积神经网络的基础上作进一步优化,设计可变形卷积神经网络(DF-R-CNN)模型,将得到的假设区域作为网络模型所需的车辆多目标检测候选区域,通过该模型实现车辆多目标的精准检测。实验结果表明,所提方法的召回率最高值达到了85%,损失函数最低值约为1.8,说明其具有较高的检测精度和检测效果。 展开更多
关键词 卷积神经网络 车道线划分 感兴趣区域ROI 可变形卷积神经网络 车辆多目标检测
在线阅读 下载PDF
区域生长全卷积神经网络交互分割肝脏CT图像 被引量:6
8
作者 张丽娟 章润 +2 位作者 李东明 李阳 王晓坤 《液晶与显示》 CAS CSCD 北大核心 2021年第9期1294-1304,共11页
由于医疗图像质量差、对比度低、患者之间差异大导致全自动分割方法很难获得足够准确、鲁棒的结果。为了解决全自动分割方法的局限性,本文提出一种基于神经网络改进的区域生长法,并与全卷积神经网络相结合对肝脏CT图像进行交互式分割。... 由于医疗图像质量差、对比度低、患者之间差异大导致全自动分割方法很难获得足够准确、鲁棒的结果。为了解决全自动分割方法的局限性,本文提出一种基于神经网络改进的区域生长法,并与全卷积神经网络相结合对肝脏CT图像进行交互式分割。首先对图像进行预处理,突出待分割肝脏区域;接着计算像素在不同边缘检测算子下的梯度值作为该像素的特征,形成像素特征向量训练网络该网络以一对像素特征向量为输入,以两像素的关联度系数为输出;然后将训练好的神经网络模型作为区域生长算法的生长准则,手动交互选取一点产生分割结果;最后将分割结果作为原图的交互信息和原图灰度通道连接在一起一同输入全卷积神经网络。实验结果表明平均Dice系数达到96.69%,像素准确率达到99.62%,平均交并比达到96.65%。不同的腹部CT图像序列中肝脏的分割结果表明,该方法能精确提取肝脏区域,满足临床应用的需求。 展开更多
关键词 卷积神经网络 区域生长法 交互式分割
在线阅读 下载PDF
增强区域全卷积网络下的炸点检测方法研究 被引量:5
9
作者 刘峰 赵广伟 王向军 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第3期412-420,共9页
野外大视场环境下的炸点检测常采用图像帧间差分的方法,但由于弹体落地后炸点分布的情况复杂,对密集炸点的检测成为了难点问题.针对该问题,将炸点图像经过整理、分类,构建了炸点检测的专用数据集.在此基础上,对R-FCN模型的特征提取网络... 野外大视场环境下的炸点检测常采用图像帧间差分的方法,但由于弹体落地后炸点分布的情况复杂,对密集炸点的检测成为了难点问题.针对该问题,将炸点图像经过整理、分类,构建了炸点检测的专用数据集.在此基础上,对R-FCN模型的特征提取网络、区域推荐网络、位置敏感池化层和分类回归层进行了分析与改进,提出了增强区域全卷积网络用于单帧目标检测,并针对现在盲目多次尝试取最优训练结果的训练方法,提出了一种基于剪枝的网络模型训练方法.在野外大视场炸点图像专用数据集上进行了对照实验,最终平均检测率为83.73%,检测率明显提高.在Pascal VOC数据集上与其他常用算法进行了对比实验,结果表明了该算法的有效性. 展开更多
关键词 炸点检测 增强区域卷积网络 JSP&P训练方法
在线阅读 下载PDF
基于全卷积神经网络的林区航拍图像虫害区域识别方法 被引量:19
10
作者 刘文定 田洪宝 +2 位作者 谢将剑 赵恩庭 张军国 《农业机械学报》 EI CAS CSCD 北大核心 2019年第3期179-185,共7页
针对航拍林区虫害图像的虫害区域不规则和传统识别方法泛化能力差的问题,提出一种基于全卷积神经网络(Fully convolution networks,FCN)的虫害区域识别方法。采用八旋翼无人机航拍虫害林区、获取林区虫害图像,并对虫害区域进行像素级标... 针对航拍林区虫害图像的虫害区域不规则和传统识别方法泛化能力差的问题,提出一种基于全卷积神经网络(Fully convolution networks,FCN)的虫害区域识别方法。采用八旋翼无人机航拍虫害林区、获取林区虫害图像,并对虫害区域进行像素级标注,用于模型训练;将VGG16模型的全连接层替换为卷积层,并通过上采样实现端到端的学习;使用预训练的卷积层参数,提升模型收敛速度;采用跳跃结构融合多种特征信息,有效提升识别精度,并通过该方法构造了5种全卷积神经网络。试验表明,针对林区航拍虫害图像,FCN-2s在5种全卷积神经网络中区域识别精度最高,其像素准确率为97. 86%,平均交并比为79. 49%,单幅分割时间为4. 31 s。该方法与K-means、脉冲耦合神经网络、复合梯度分水岭算法相比,像素准确率分别高出44. 93、20. 73、6. 04个百分点,平均交并比分别高出50. 19、35. 67、18. 86个百分点,单幅分割时间分别缩短47. 54、19. 70、11. 39 s,可以实现林区航拍图像的虫害区域快速准确识别,为林业虫害监测和防治提供参考。 展开更多
关键词 林业虫害监测 航拍 图像识别 卷积神经网络 语义分割 迁移学习
在线阅读 下载PDF
基于改进区域卷积神经网络的安全帽佩戴检测 被引量:18
11
作者 徐守坤 王雅如 顾玉宛 《计算机工程与设计》 北大核心 2020年第5期1385-1389,共5页
针对已有的安全帽佩戴检测算法对小尺寸目标和部分遮挡目标检测效果较差的问题,在区域卷积神经网络基础上,做出优化用于安全帽佩戴检测。在原始Faster RCNN的基础上使用多层卷积特征融合技术优化区域建议网络产生候选区域特征图,使用在... 针对已有的安全帽佩戴检测算法对小尺寸目标和部分遮挡目标检测效果较差的问题,在区域卷积神经网络基础上,做出优化用于安全帽佩戴检测。在原始Faster RCNN的基础上使用多层卷积特征融合技术优化区域建议网络产生候选区域特征图,使用在线困难样本挖掘技术训练ROI网络,自动挑选出困难样本使训练更加有效。实验结果表明,相比原始的Faster RCNN算法,所提方法检测精度提高了4.73%,对部分遮挡和小尺寸目标均有较好的检测效果,对环境变化具有更强的适应性。 展开更多
关键词 帽佩戴检测 区域卷积神经网络 区域建议网络 多层卷积特征融合 在线困难样本挖掘
在线阅读 下载PDF
基于新型深度全卷积网络的肝脏CT影像三维区域自动分割 被引量:9
12
作者 孙明建 徐军 +1 位作者 马伟 张玉东 《中国生物医学工程学报》 CAS CSCD 北大核心 2018年第4期385-393,共9页
肝脏分割对于肝肿瘤肝段切除及肝移植体积测量具有重要的临床价值。由于在CT影像中肝脏与邻近脏器的灰度值相似性很高,因此对肝脏区域的三维自动分割是一项具有挑战性的难题。为解决精准肝脏分割的问题,提出一种新型的深度全卷积网络结... 肝脏分割对于肝肿瘤肝段切除及肝移植体积测量具有重要的临床价值。由于在CT影像中肝脏与邻近脏器的灰度值相似性很高,因此对肝脏区域的三维自动分割是一项具有挑战性的难题。为解决精准肝脏分割的问题,提出一种新型的深度全卷积网络结构3DUnet-C2。该结构充分利用肝脏CT图像的三维空间信息,并有效结合肝脏区域的浅层特征和深层特征。特别地,还提出一种新的3DUnet-C2网络训练策略,通过选取清晰图像,并从图像中截取肝脏区域作为样本进行训练的方式,得到初步3DUnet-C2模型权重,并使用该权重来初始化3DUnet-C2的网络参数,从而使网络达到收敛。最后,针对3DUnet-C2网络分割肝脏边界不精准的问题,在原有3DUnet-C2网络模型的基础上,运用三维条件随机场构建3DUnet-C2-CRF模型来优化肝脏分割边界。为了验证所提出三维分割模型的性能,从ISBI2017 Liver Tumor Segmentation Challenge的数据集中选取100张CT图像用于训练、验证和测试,3DUnet-C2-CRF模型在随机选取的20张测试集上的分割准确率的Dice系数为96.9%,高于3DUnet和Vnet模型的Dice系数。实验结果表明,3DUnet-C2-CRF模型具有更好的特征表达能力以及更强的泛化性能,从而可提升模型的分割准确率。 展开更多
关键词 肝脏分割 深度卷积网络 条件随机场
在线阅读 下载PDF
一种基于全卷积神经网络的空中目标战术意图识别模型 被引量:3
13
作者 李乐民 宋亚飞 +1 位作者 王鹏 王科 《空军工程大学学报》 CSCD 北大核心 2024年第5期98-106,共9页
针对现有空中目标识别方法敏捷性和可靠度不够高的问题,研究设计了一种深度学习模型MLSTM-FCN,结合了全卷积神经网络、循环神经网络和压缩与激励模块的优点。全卷积网络能够提取空战数据中的复杂局部特征,长短记忆神经网络可以捕捉空战... 针对现有空中目标识别方法敏捷性和可靠度不够高的问题,研究设计了一种深度学习模型MLSTM-FCN,结合了全卷积神经网络、循环神经网络和压缩与激励模块的优点。全卷积网络能够提取空战数据中的复杂局部特征,长短记忆神经网络可以捕捉空战意图数据的时序特征。通过消融实验和对比实验结果表明,MLSTM-FCN模型在意图识别准确率、反应速度和抗干扰能力方面明显优于现有的空中目标意图识别模型,取得了sota的结果,为指挥员在进行空中作战决策时提供更有效的依据。 展开更多
关键词 意图识别 空中目标 深度学习 卷积网络 长短记忆神经网络 压缩与激励模块
在线阅读 下载PDF
基于深度全卷积神经弹性网络WCGAN-GP模型的语音增强研究 被引量:2
14
作者 许雯婷 龚晓峰 《计算机应用与软件》 北大核心 2024年第2期130-137,共8页
Wasserstein距离生成对抗网络(Wasserstein Generative Adversal Network,WGAN)模型^([1])在语音增强中运用广泛,但存在梯度易爆炸、性能不稳定等问题。引入梯度惩罚(Gradient Penalty,GP)和弹性网络条件约束,并将生成器和判别器优化成... Wasserstein距离生成对抗网络(Wasserstein Generative Adversal Network,WGAN)模型^([1])在语音增强中运用广泛,但存在梯度易爆炸、性能不稳定等问题。引入梯度惩罚(Gradient Penalty,GP)和弹性网络条件约束,并将生成器和判别器优化成深度全卷积神经网络(Deep Fully Convolutional Neural Networks,DFCNN)结构,提出一种基于DFCNN的弹性网络条件梯度惩罚(Wasserstein Conditional Generative Adversal Network Gradient Penalty,WCGAN-GP)模型。改进后的模型可以达到真实Lipschitz限制条件,提高了可控性、稳定性和特征提取能力,能更快优化训练。实验将改进后的模型与WGAN对不同噪声条件下的语音进行增强,结果证实了改进后的模型在语音增强方面的优越性。 展开更多
关键词 Wasserstein距离 深度卷积神经网络 梯度惩罚 弹性网络 条件约束
在线阅读 下载PDF
基于箱线图与全卷积网络的动态场景烟雾检测 被引量:6
15
作者 王文标 郝友维 时启衡 《安全与环境学报》 CAS CSCD 北大核心 2024年第6期2213-2219,共7页
烟雾具有透光性强、纹理模糊等特征,且易与云、雾等目标混淆,导致基于视频的单阶段烟雾检测网络识别准确率低且受环境干扰明显,难以满足实际现场的使用需求。针对上述问题,提出一种基于箱线图背景建模(Box Plot Background, BPB)与全卷... 烟雾具有透光性强、纹理模糊等特征,且易与云、雾等目标混淆,导致基于视频的单阶段烟雾检测网络识别准确率低且受环境干扰明显,难以满足实际现场的使用需求。针对上述问题,提出一种基于箱线图背景建模(Box Plot Background, BPB)与全卷积分类网络(Full Convulsion DNCNN,FCDN)的二阶段烟雾检测算法:一阶段使用箱线图统计方法剔除背景队列中的移动干扰目标,利用背景队列中的最大值与最小值建立能适应动态场景的背景模型,以减少一阶段动态背景误报和背景模型被污染带来的烟雾区域遗漏;二阶段使用卷积层替换全连接层,解决输入图像尺寸和形状的限制问题,提升火灾初期细长形烟雾的检出效率。试验显示,该算法在动态场景下的漏检率与误检率均明显降低,并显著提升了烟雾检测速度。 展开更多
关键词 工程 烟雾检测 动态场景 箱线图 背景建模 卷积网络
在线阅读 下载PDF
基于全卷积网络的车道区域分割算法
16
作者 魏民祥 滕德成 《汽车安全与节能学报》 CAS CSCD 2019年第3期334-341,共8页
为智能车辆的轻量化、实时性检测,提高车道识别的准确度、鲁棒性,提出了一种利用全卷积网络(FCN)实现车道区域分割的方法。采用一种对称结构的全卷积网络对车道区域作逐像素预测:利用卷积、池化提取车道特征,利用池化索引辅助上采样,用... 为智能车辆的轻量化、实时性检测,提高车道识别的准确度、鲁棒性,提出了一种利用全卷积网络(FCN)实现车道区域分割的方法。采用一种对称结构的全卷积网络对车道区域作逐像素预测:利用卷积、池化提取车道特征,利用池化索引辅助上采样,用卷积来恢复特征信息。在既定网络结构下,比较3×3、5×5和7×7尺寸的卷积核对模型性能的影响。基于FCN-32s和FCN-16s,分别设计混叠结构的FCN和无混叠结构的FCN与本网络作测试对比。结果表明:该算法对车道分割准确、鲁棒性强、实时处理能力优秀,分割效果优于传统FCN;在3种不同尺寸中,小尺寸(3×3)卷积核的实时处理速率最高,达53帧/s。因此,该算法适合自动驾驶道路感知任务。 展开更多
关键词 智能车辆 车道识别 实时检测 车道区域分割 深度学习 卷积网络(FCN) 卷积核尺寸
在线阅读 下载PDF
绿色信贷网络影响绿色全要素生产率吗?
17
作者 应瑛 陈海盛 沈满洪 《生态经济》 北大核心 2025年第5期168-174,183,共8页
开放经济下区域联系增强,考察地区绿色信贷对绿色全要素生产率影响必须置身于与其他地区互动网络中。采用社会网络分析方法考察中国绿色信贷网络结构,从网络点出度和点入度对各省份网络特征进行刻画,在此基础上,运用改进EBM模型测算绿... 开放经济下区域联系增强,考察地区绿色信贷对绿色全要素生产率影响必须置身于与其他地区互动网络中。采用社会网络分析方法考察中国绿色信贷网络结构,从网络点出度和点入度对各省份网络特征进行刻画,在此基础上,运用改进EBM模型测算绿色全要素生产率,构建空间计量模型讨论绿色信贷网络对绿色全要素生产率影响。研究发现:中国绿色信贷网络结构正逐渐形成,网络密度呈上升态势,绿色信贷网络点入度对绿色全要素生产率具有较为显著、稳健的负向抑制作用,且具有区域异质性。环保支出水平是网络点入度作用绿色全要素生产率的主要传导路径,非国有经济的发展具有重要负向调节效应。论文为更好地理解中国绿色信贷政策的跨地互动性与高风险性提供了潜在视角。 展开更多
关键词 绿色信贷网络 绿色要素生产率 区域异质性 传导路径 调节效应
在线阅读 下载PDF
改进全卷积神经网络的遥感图像小目标检测 被引量:1
18
作者 徐雪峰 郭广伟 黄余 《机械设计与制造》 北大核心 2024年第10期38-42,共5页
对遥感图像中小目标的检测进行研究,提出改进全卷积神经网络的检测新算法。首先,分析了分层概率图模型和深度学习的基本概念和模型。然后,提出分层概率图模型中分层马尔可夫随机场的后验边际模式的递归获取步骤。最后,将全卷积神经网络... 对遥感图像中小目标的检测进行研究,提出改进全卷积神经网络的检测新算法。首先,分析了分层概率图模型和深度学习的基本概念和模型。然后,提出分层概率图模型中分层马尔可夫随机场的后验边际模式的递归获取步骤。最后,将全卷积神经网络和分层概率图模型联合,实现对全卷积神经网络的改进,构建遥感图像小目标检测新方法。此外,在所提方法中,选用随机森林技术从分类学习样本中估计每个类和分辨率的后验概率。基于对某地区卫星数据集的处理,将所提出的检测方法与其他四种方法进行了对比。对比实验结果表明,与其他方法相比,所提出的检测方法对低矮植被、车辆、树等遥感图像中的小目标具有更高的检测准确率。 展开更多
关键词 小目标检测 遥感图像 卷积神经网络 分层概率图模型 随机森林
在线阅读 下载PDF
基于全卷积神经网络的纵横波分解技术研究及其在弹性波成像中的应用
19
作者 许凯 陈祖庆 +3 位作者 孙振涛 张广智 康家光 王静波 《石油物探》 CSCD 北大核心 2024年第6期1126-1137,共12页
纵波(P)和横波(S)波场分解对弹性介质中的多分量地震波成像至关重要,但是常规P-S波波场分解方法精度相对较低,且存在成像假象的问题。为此,构建了一种基于全卷积神经网络(FCN)的网络结构,用于二维各向同性弹性介质地震波场的P-S波波场... 纵波(P)和横波(S)波场分解对弹性介质中的多分量地震波成像至关重要,但是常规P-S波波场分解方法精度相对较低,且存在成像假象的问题。为此,构建了一种基于全卷积神经网络(FCN)的网络结构,用于二维各向同性弹性介质地震波场的P-S波波场分解。该网络由全卷积神经网络构建,使用合成波场快照进行训练,训练完成的网络类似空间滤波器,可实现高精度的P-S波波场分解。不同于基于傅里叶变换的P-S波波场分解方法,该方法可以在波场任意空间位置处开展P-S波波场分解,因此适用于面向目标的地震成像。合成数据的计算示例表明,基于全卷积神经网络的纵横波波场分解方法可有效分解P波和S波波场,且精度高于其他空间域分解方法。弹性波逆时偏移成像结果表明,使用基于全卷积神经网络(FCN)的P-S波波场分解方法所获得的基于P波和S波的地震波成像结果,可有效减少速度界面处的成像假象,提高复杂地质条件下的多波成像精度。 展开更多
关键词 弹性波场 P-S波波场分解 卷积神经网络(FCN) 弹性波成像
在线阅读 下载PDF
基于改进区域全卷积网络的高压引线接头红外图像特征分析的在线故障诊断方法 被引量:29
20
作者 徐奇伟 黄宏 +2 位作者 张雪锋 周传 吴绍朋 《电工技术学报》 EI CSCD 北大核心 2021年第7期1380-1388,共9页
随着智能电网建设的不断发展,海量红外图像急剧增加,而传统红外故障检测依靠人工排查或手工提取特征,检测效率低且对人员经验依赖大。为实现对红外图像的高效智能化检测,保障电网安全运行,构建基于红外特征分析的在线故障诊断系统,提出... 随着智能电网建设的不断发展,海量红外图像急剧增加,而传统红外故障检测依靠人工排查或手工提取特征,检测效率低且对人员经验依赖大。为实现对红外图像的高效智能化检测,保障电网安全运行,构建基于红外特征分析的在线故障诊断系统,提出通过改进高压引线接头红外图像的特征提取网络,以提升对小目标的识别性能,然后利用区域全卷积网络(R-FCN)实现对故障区域的定位和运行状态的识别,并且使用OpenCV对该故障区域的运行状态进行二次诊断,以进一步降低误报率。最后通过测试分析,改进后的R-FCN网络对高压引线接头红外图像故障诊断的平均精度达到了80.76%,比原R-FCN网络提升了8.43%。 展开更多
关键词 故障诊断 高压引线接头 红外图像 区域卷积网络 残差网络
在线阅读 下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部