将基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)应用于工程优化问题时,由于各目标函数在数量级及量纲上的不同,需要对目标函数进行归一化处理.首先,采用一种自适应ε约束差分进化...将基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)应用于工程优化问题时,由于各目标函数在数量级及量纲上的不同,需要对目标函数进行归一化处理.首先,采用一种自适应ε约束差分进化算法(εConstrained Differential Evolution,εDE)寻找各个目标在Pareto前沿上的最大值和最小值,利用这些值对各目标进行归一化处理;然后,用MOEA/D进行求解,并在算法中加入了自适应ε约束处理技术;最后,采用一个标准测试问题和一个焊接梁设计优化问题对该算法进行测试,并与其他两种归一化方法进行了比较.根据提出的方法,MOEA/D能对Pareto前沿的一端进行集中优化,因而能处理一些Pareto前沿两端难以优化的问题.展开更多
传统的Pareto支配关系在高维目标空间存在固有缺陷,而一些改进的支配方法在平衡高维目标解群的收敛性与多样性上尚有提升空间.基于此,提出一种参考向量关联区域(小生境)自动缩减的支配关系A2R(dominance relation based on the Automati...传统的Pareto支配关系在高维目标空间存在固有缺陷,而一些改进的支配方法在平衡高维目标解群的收敛性与多样性上尚有提升空间.基于此,提出一种参考向量关联区域(小生境)自动缩减的支配关系A2R(dominance relation based on the Automatically reduced region Associated with the Reference vector).该支配方法在进化全过程中逐代缩减小生境规模,从而实现收敛性与多样性自动平衡,而且不引入额外参数.另外,提出利用基于L_(p)-范式(p=1/M,M为目标数)的拥挤距离度量高维目标解群的多样性.将上述两种策略嵌入到经典的NSGA-II(Nondominated Sorting Genetic Algorithm II)框架,设计一种基于A2R支配关系的高维多目标进化算法MaOEA/A2R(Many-Objective Evolutionary Algorithm base on A2R).该算法与其他5种代表性的高维多目标进化算法一同在5-、10-、15-和20-目标的DTLZ(benchmark MOP proposed by Deb,Thiele,Lau-manns,and Zitzler)和WFG(benchmark MOP pro-posed by Walking Fish Group)基准测试问题上进行IGD(Inverted Generational Distance)和HV(Hyper Volume)性能测试.结果表明,MaOEA/A2R算法总体上具有较好的收敛性和多样性.由此表明,MaOEA/A2R是一种颇具前景的高维多目标进化算法.展开更多
在很多实际应用问题中,不确定性的存在对于优化问题的最优解的性能会产生影响。在求解不确定环境下的优化问题时,往往需要考虑解的鲁棒性。最优解的鲁棒性定义通常要考虑其局部邻域内所有解的表现。在多目标优化背景下,如何逼近鲁棒最...在很多实际应用问题中,不确定性的存在对于优化问题的最优解的性能会产生影响。在求解不确定环境下的优化问题时,往往需要考虑解的鲁棒性。最优解的鲁棒性定义通常要考虑其局部邻域内所有解的表现。在多目标优化背景下,如何逼近鲁棒最优帕累托前沿也是一件非常有挑战性的工作。已有的鲁棒多目标进化算法能够比较好地处理低维鲁棒多目标优化问题,即问题的决策变量维数不超过10,但对于高维鲁棒多目标优化问题的表现往往不好。提出了一种结合自编码器以及协同进化方法的多目标进化算法(Decomposition-based Multiobjective Evolutionary Algorithm Assisted by Autoencoder and Cooperative Coevolution,MOEA/D-AECC),用来解决可降维的高维鲁棒多目标优化问题。该算法利用两个不同种群分别优化原始多目标优化问题以及对应的鲁棒多目标优化问题。为提高算法处理高维问题的能力,该算法利用自编码器模型对高维数据进行降维,从而提取出高维数据的低维特征。通过重构这些低维特征来学习可靠的下降方向,之后沿着可靠的下降方向采样产生新解。最后,通过实验测试了MOEA/D-AECC算法在一组可降维的高维鲁棒多目标优化问题上的表现。实验结果表明,MOEA/D-AECC算法的寻优显著优于其他几种代表性的鲁棒多目标进化算法。展开更多
文摘将基于分解的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Decomposition,MOEA/D)应用于工程优化问题时,由于各目标函数在数量级及量纲上的不同,需要对目标函数进行归一化处理.首先,采用一种自适应ε约束差分进化算法(εConstrained Differential Evolution,εDE)寻找各个目标在Pareto前沿上的最大值和最小值,利用这些值对各目标进行归一化处理;然后,用MOEA/D进行求解,并在算法中加入了自适应ε约束处理技术;最后,采用一个标准测试问题和一个焊接梁设计优化问题对该算法进行测试,并与其他两种归一化方法进行了比较.根据提出的方法,MOEA/D能对Pareto前沿的一端进行集中优化,因而能处理一些Pareto前沿两端难以优化的问题.
文摘传统的Pareto支配关系在高维目标空间存在固有缺陷,而一些改进的支配方法在平衡高维目标解群的收敛性与多样性上尚有提升空间.基于此,提出一种参考向量关联区域(小生境)自动缩减的支配关系A2R(dominance relation based on the Automatically reduced region Associated with the Reference vector).该支配方法在进化全过程中逐代缩减小生境规模,从而实现收敛性与多样性自动平衡,而且不引入额外参数.另外,提出利用基于L_(p)-范式(p=1/M,M为目标数)的拥挤距离度量高维目标解群的多样性.将上述两种策略嵌入到经典的NSGA-II(Nondominated Sorting Genetic Algorithm II)框架,设计一种基于A2R支配关系的高维多目标进化算法MaOEA/A2R(Many-Objective Evolutionary Algorithm base on A2R).该算法与其他5种代表性的高维多目标进化算法一同在5-、10-、15-和20-目标的DTLZ(benchmark MOP proposed by Deb,Thiele,Lau-manns,and Zitzler)和WFG(benchmark MOP pro-posed by Walking Fish Group)基准测试问题上进行IGD(Inverted Generational Distance)和HV(Hyper Volume)性能测试.结果表明,MaOEA/A2R算法总体上具有较好的收敛性和多样性.由此表明,MaOEA/A2R是一种颇具前景的高维多目标进化算法.
文摘在很多实际应用问题中,不确定性的存在对于优化问题的最优解的性能会产生影响。在求解不确定环境下的优化问题时,往往需要考虑解的鲁棒性。最优解的鲁棒性定义通常要考虑其局部邻域内所有解的表现。在多目标优化背景下,如何逼近鲁棒最优帕累托前沿也是一件非常有挑战性的工作。已有的鲁棒多目标进化算法能够比较好地处理低维鲁棒多目标优化问题,即问题的决策变量维数不超过10,但对于高维鲁棒多目标优化问题的表现往往不好。提出了一种结合自编码器以及协同进化方法的多目标进化算法(Decomposition-based Multiobjective Evolutionary Algorithm Assisted by Autoencoder and Cooperative Coevolution,MOEA/D-AECC),用来解决可降维的高维鲁棒多目标优化问题。该算法利用两个不同种群分别优化原始多目标优化问题以及对应的鲁棒多目标优化问题。为提高算法处理高维问题的能力,该算法利用自编码器模型对高维数据进行降维,从而提取出高维数据的低维特征。通过重构这些低维特征来学习可靠的下降方向,之后沿着可靠的下降方向采样产生新解。最后,通过实验测试了MOEA/D-AECC算法在一组可降维的高维鲁棒多目标优化问题上的表现。实验结果表明,MOEA/D-AECC算法的寻优显著优于其他几种代表性的鲁棒多目标进化算法。