期刊文献+
共找到449篇文章
< 1 2 23 >
每页显示 20 50 100
快速综合学习粒子群优化算法 被引量:3
1
作者 杨帆 乌景秀 +2 位作者 范子武 李子祥 朱沈涛 《水利水电技术(中英文)》 北大核心 2025年第2期30-44,共15页
【目的】粒子群优化算法在反问题求解、函数优化、数据挖掘、机器学习等研究领域广泛应用,但在求解复杂多峰问题时仍存在过早收敛的问题。为了提升粒子群算法在处理复杂多峰问题求解速度和精度,提出了快速综合学习粒子群优化算法(Fast C... 【目的】粒子群优化算法在反问题求解、函数优化、数据挖掘、机器学习等研究领域广泛应用,但在求解复杂多峰问题时仍存在过早收敛的问题。为了提升粒子群算法在处理复杂多峰问题求解速度和精度,提出了快速综合学习粒子群优化算法(Fast Comprehensive Learning Particle Swarm Optimization,FCLPSO)。【方法】FCLPSO算法引入粒子学习概率、个体影响概率、群体影响概率三个属性,表征每个粒子个体“与生俱来”的不同学习能力,同时新增强化学习、粒子重生等策略,提升算法收敛速度以及监测并跳出“伪收敛”状态。选用14个标准测试函数以及6种常用粒子群变体算法开展FCLPSO算法性能分析。【结果】结果显示:在收敛性方面,FCLPSO算法平均排名为1.86,排名第一次数为7次、排名第二的次数为2次、排名最后次数为0,最终综合排名第一;在鲁棒性方面,FCLPSO算法成功率排名第一,平均值为94.3%,14个测试函数中最低成功率为73.3%;达到阈值所需适应度评价次数最少,平均值40817,较其他算法评价次数少一半。【结论】结果表明:FCLPSO算法在收敛精度、收敛速度和鲁棒性方面排名综合第一,对复杂多峰问题求解更具优势,可为工程应用中复杂优化问题求解提供重要手段。 展开更多
关键词 粒子优化算法 强化学习 粒子属性 粒子重生 过早收敛 影响因素 人工智能 全局搜索
在线阅读 下载PDF
基于改进粒子群算法和极限学习机模型的配电网物资需求预测
2
作者 王永利 赵中华 +2 位作者 张一诺 冯天义 刘怡然 《科学技术与工程》 北大核心 2025年第15期6410-6418,共9页
为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的... 为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的因素。其次,利用引入自适应惯性因子和学习因子的改进粒子群算法调整极限学习机的最佳参数组合,训练各类配网项目物资需求预测模型。最后,以南方电网深圳市某供电局2020—2022年基建项目10 kV电力电缆需求情况为例,将GRA-IPSO-ELM(grey relational analysis,improved particle swarm optimization,and extreme learning machines)德尔菲法和灰色关联分析法模型与常见的4种预测模型的结果进行对比。结果表明,相较于ELM模型、支持向量机模型以及PSO-ELM模型,GRA-IPSO-ELM模型预测准确率得到10.38%、5.37%、3.83%的提升,可见,所提出的模型实现了对配网物资需求数量准确且高效的预测。 展开更多
关键词 物资需求预测 配电网 极限学习 改进粒子优化算法
在线阅读 下载PDF
基于机器学习与粒子群算法的LBM多相流模型优化
3
作者 侯亚祺 张玮 +2 位作者 张鸿 高飞雨 胡嘉华 《化工学报》 北大核心 2025年第3期1120-1132,共13页
在利用格子Boltzmann方法(LBM)模拟低毛细数的弹状流流动时,由于气泡发展过程复杂,模型控制参数选择难度大,当所选参数不当时,会产生错误的非物理现象,从而降低计算精度。通过机器学习建立LBM多相流过程模型,采用粒子群算法优化机器学... 在利用格子Boltzmann方法(LBM)模拟低毛细数的弹状流流动时,由于气泡发展过程复杂,模型控制参数选择难度大,当所选参数不当时,会产生错误的非物理现象,从而降低计算精度。通过机器学习建立LBM多相流过程模型,采用粒子群算法优化机器学习模型的超参数,进一步优化LBM建模过程中的控制参数,建立了LBM-机器学习-粒子群算法耦合多相流数值模拟模型。基于该模型研究了T型微通道内弹状流流动参数对气泡演化过程稳定性的影响。模拟结果表明,所建LBM多相流模型能预测复杂条件下气泡伸长率,在此基础上通过伸长率分析找到了最优气液两相进口流速关系,有效解决了低毛细数下弹状流流动不稳定性问题,显著提高了模拟计算精度与计算效率。 展开更多
关键词 格子Boltzmann法 微通道弹状流 机器学习 粒子算法 模型优化
在线阅读 下载PDF
记忆增强型的重构粒子群算法 被引量:1
4
作者 吴炳南 刘建华 +1 位作者 力尚龙 李牧元 《计算机工程与应用》 北大核心 2025年第9期116-127,共12页
重构粒子群算法(RPSO)是基于粒子群算法(PSO)的线性系统理论分析结果而重新构建一种群体智能算法,其保留了粒子群算法的个体最优位置和全局最优位置作为学习样本的策略。RPSO具有比较好的收敛性理论支撑,简单易用。但是,重构粒子群算法... 重构粒子群算法(RPSO)是基于粒子群算法(PSO)的线性系统理论分析结果而重新构建一种群体智能算法,其保留了粒子群算法的个体最优位置和全局最优位置作为学习样本的策略。RPSO具有比较好的收敛性理论支撑,简单易用。但是,重构粒子群算法丢失了种群的记忆,即粒子的历史位置和适应度等信息。为了加强对记忆的利用并提高种群的协作能力,提出了一种记忆增强型的重构粒子群算法(MERPSO)。该算法设计了经验选择策略和区块搜索策略储存记忆,构建了两个新的学习样本,并使用新的学习样本替代原本的学习样本。此外,通过引入带偏移量的加速度系数来平衡算法的局部开发和全局探索能力。实验证明,MERPSO算法在CEC2013基准测试函数集和工程设计问题上表现出更好的性能,并且所采用的策略具有一定的有效性。 展开更多
关键词 重构粒子算法 记忆 学习样本 加速度系数 CEC2013
在线阅读 下载PDF
基于时序演变粒子群算法的双色注射产品翘曲工艺优化
5
作者 王涛 李光明 +1 位作者 胡秋霞 徐静 《化工学报》 北大核心 2025年第7期3403-3415,共13页
以某轿车精密仪表板双色注射成型为研究对象,通过优化双色注射成型工艺参数,降低产品翘曲变形,从而提高产品质量。鉴于双色注射工艺参数与产品翘曲变形之间呈现高维度、非线性、波动性等特征且多工序耦合严重,极易导致传统优化方法陷入... 以某轿车精密仪表板双色注射成型为研究对象,通过优化双色注射成型工艺参数,降低产品翘曲变形,从而提高产品质量。鉴于双色注射工艺参数与产品翘曲变形之间呈现高维度、非线性、波动性等特征且多工序耦合严重,极易导致传统优化方法陷入局部最优,造成优化困难等问题,提出了一种基于时序演变的粒子群优化算法(TEPSO),利用正交膨胀空间均衡散布的优点提高粒子群的搜索能力和效率,并采用Q-Learning思想,通过粒子与环境的不断交互探索,开发基于时序演变的学习策略以确定粒子正交空间的膨胀因子。在某轿车仪表板优化设计中,与初始试验方案相比,采用TEPSO算法优化后仪表板Z向翘曲从4.698 mm降低到2.194 mm,优化效果达到53.3%,证实了TEPSO算法的有效性和实用性。 展开更多
关键词 双色注射成型 粒子算法 强化学习 优化设计 翘曲变形 模拟 预测
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络
6
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
应用多策略改进量子粒子群算法的直流电与Rayleigh波联合反演
7
作者 朱春光 管泓清 +3 位作者 秦天 张富翔 王强 高远 《石油地球物理勘探》 北大核心 2025年第1期137-151,共15页
针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)... 针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)的量子行为粒子群(Quantum-behaved Particle Swarm Optimization,QPSO)算法(简称为COBL-CS-QPSO算法)应用于二者的一维联合反演。通过联合反演可以从电阻率数据中提取层厚信息,弥补单独Rayleigh波反演难以精确解析层厚的问题;同时多策略算法的引入使解在搜索过程中不易陷入局部最优,并加强了不确定环境下的随机搜索效率。理论模型实验考虑了无噪声与有噪声以及已知模型层数与未知模型层数的多种情况,并使模型反演在宽泛的搜索区间内进行,最终取得了良好的反演效果。随后将该联合反演算法应用于实际数据,结果表明基于COBL-CS-QPSO算法的直流电与Rayleigh波联合反演在无钻孔信息或未知地下详细分层的条件下,能够获得相比于单独方法更为准确的结果。同时与自适应粒子群(APSO)算法的对比也体现了改进算法的反演优势。 展开更多
关键词 Rayleigh 波法 直流电法 联合反演 量子行为粒子算法 重心反向学习 混沌搜索 无限折叠的迭代混 沌映射 浅地表
在线阅读 下载PDF
基于改进粒子群算法的焊接机械臂轨迹规划方法
8
作者 景会成 张冰珂 +2 位作者 张靖轩 郭明亮 孙晋超 《现代制造工程》 北大核心 2025年第6期67-72,128,共7页
为了提高焊接机械臂在不同障碍物环境中的工作效率,提出了一种多策略改进粒子群算法的避障轨迹规划方法。利用6次多项式函数对机械臂前3个关节进行插值规划,获取运动轨迹。动态调整粒子群优化算法的惯性权重和学习因子,平衡算法的全局... 为了提高焊接机械臂在不同障碍物环境中的工作效率,提出了一种多策略改进粒子群算法的避障轨迹规划方法。利用6次多项式函数对机械臂前3个关节进行插值规划,获取运动轨迹。动态调整粒子群优化算法的惯性权重和学习因子,平衡算法的全局和局部搜索能力;引入动态透镜成像反向学习策略,并融合重启策略和贪婪算法,提升算法跳出局部最优的能力。以IRB120型机械臂为研究对象,通过MATLAB软件进行仿真。仿真结果表明,改进的粒子群算法在收敛速度和寻优精度上有显著的提升,运动轨迹平滑无突变。 展开更多
关键词 机械臂 粒子优化算法 反向学习策略 避障轨迹规划
在线阅读 下载PDF
基于精英知识引导的多种群协作粒子群优化算法 被引量:2
9
作者 张伟 张润雨 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第6期116-128,共13页
目的为了解决粒子群优化(particle swarm optimization,PSO)算法易早熟收敛、后期收敛速度慢、精度低等问题,方法提出一种基于精英知识引导的多种群协作粒子群优化算法(multi-group cooperation particle swarm optimization algorithm,... 目的为了解决粒子群优化(particle swarm optimization,PSO)算法易早熟收敛、后期收敛速度慢、精度低等问题,方法提出一种基于精英知识引导的多种群协作粒子群优化算法(multi-group cooperation particle swarm optimization algorithm,MGCPSO)。首先,采用基于幂函数约束的logistic映射得到分布均匀的初始种群,加快寻优速度并提高找到最优解的概率;其次,在算法执行阶段动态划分多种群,并利用精英知识引导劣势粒子飞行,实现粒子间的信息共享和协同进化,降低粒子在解空间探索的盲目性;最后,综合融入精英知识的反向学习和极值扰动策略对粒子施加变异,帮助粒子扩大搜索区域并加强对最优邻域的精细探索。结果为验证MGCPSO的性能,在30维和100维的基准测试函数上进行了仿真实验研究,结果表明,相比于其他几种改进算法,提出的算法在收敛速度和收敛精度上均有良好表现。结论多种群协作粒子群优化可以有效避免算法早熟收敛和陷入局部最优,同时可以提高算法的全局搜索能力和局部开发能力。 展开更多
关键词 粒子优化算法 LOGISTIC映射 多种 精英知识 反向学习 极值扰动
在线阅读 下载PDF
基于改进粒子群算法优化的染色木材颜色检测算法研究 被引量:2
10
作者 管雪梅 吴言 杨渠三 《林产工业》 北大核心 2024年第1期1-7,共7页
为提高染色木材颜色的检测精度和速度,对樟子松木材单板进行染色,选取染色单板的光谱反射率作为输入,以极限学习机模型为基础构建预测模型,对染色单板的色度参数L^(*)、a^(*)、b^(*)进行预测,运用粒子群算法对ELM权值和阈值进行寻优,并... 为提高染色木材颜色的检测精度和速度,对樟子松木材单板进行染色,选取染色单板的光谱反射率作为输入,以极限学习机模型为基础构建预测模型,对染色单板的色度参数L^(*)、a^(*)、b^(*)进行预测,运用粒子群算法对ELM权值和阈值进行寻优,并引入非线性惯性权重和新的位置与速度更新策略改进粒子群算法,以消除其易陷入局部最优的缺点。此外,以L^(*)、a^(*)、b^(*)平均绝对误差为评价指标,与基础ELM模型及其他模型作对比,发现优化后的模型平均绝对误差为0.16,测色效果相较于基础ELM的0.68、麻雀算法优化的ELM的0.37等具有明显优势,这对于提高木材染色生产效率具有重要意义。 展开更多
关键词 粒子算法 极限学习 反射率 惯性权重 全局优化
在线阅读 下载PDF
移动机器人导航路径的自主学习粒子群规划方法 被引量:3
11
作者 吴妮妮 王岫鑫 《机械设计与制造》 北大核心 2024年第7期342-346,共5页
为了减小移动机器人行驶路径长度,提出了基于自主学习粒子群算法的导航路径规划方法。以减小路径长度为目标建立了路径规划模型;为了防止机器人发生碰撞,给出了障碍物膨化处理方法。在粒子群算法中引入了由多种粒子学习策略组成的学习... 为了减小移动机器人行驶路径长度,提出了基于自主学习粒子群算法的导航路径规划方法。以减小路径长度为目标建立了路径规划模型;为了防止机器人发生碰撞,给出了障碍物膨化处理方法。在粒子群算法中引入了由多种粒子学习策略组成的学习策略池,并给出了粒子对学习策略进行选择的自主学习策略,从而提出了具有较强进化能力的自主学习粒子群算法。经算法性能测试,自主学习粒子群算法的优化能力强于传统粒子群算法和文献[11]改进粒子群算法;将自主学习粒子群算法应用于简单场景和复杂场景的路径规划,该算法规划的路径均值和标准差均小于传统粒子群算法,验证了自主学习粒子群算法在机器人路径规划中的优越性。 展开更多
关键词 移动机器人 路径规划 学习策略池 自主学习策略 粒子算法
在线阅读 下载PDF
机械臂自抗扰控制的自适应-重构粒子群优化 被引量:1
12
作者 郑伦川 梁新元 袁乖宁 《机械设计与制造》 北大核心 2025年第2期231-235,共5页
为了减小机械臂在扰动作用下的控制误差,提出了基于自适应-重构粒子群算法的机械臂自抗扰控制优化方法。介绍了自抗扰控制器的组成和工作原理,依据ITAE指标建立了自抗扰控制参数的优化模型。对粒子群算法的粒子进化能力和算法进化能力... 为了减小机械臂在扰动作用下的控制误差,提出了基于自适应-重构粒子群算法的机械臂自抗扰控制优化方法。介绍了自抗扰控制器的组成和工作原理,依据ITAE指标建立了自抗扰控制参数的优化模型。对粒子群算法的粒子进化能力和算法进化能力进行了定义,基于两种进化能力构造了自适应学习因子,使粒子能够自适应选择高效率学习对象;引入了粒子随机重构策略,使算法具备跳出局部最优的能力,将新型算法命名为自适应-重构粒子群算法。经过仿真测试和验证,自适应-重构粒子群算法的优化能力强于标准算法;在时变扰动和恒值扰动作用下,自适应-重构粒子群算法优化的机械臂控制误差远小于标准粒子群算法。仿真结果验证了自适应-重构粒子群算法在机械臂自抗扰控制优化中的优越性。 展开更多
关键词 机械臂 自抗扰控制 自适应学习因子 粒子重构策略 粒子算法
在线阅读 下载PDF
具备反向学习和局部学习能力的粒子群算法 被引量:83
13
作者 夏学文 刘经南 +2 位作者 高柯夫 李元香 曾辉 《计算机学报》 EI CSCD 北大核心 2015年第7期1397-1407,共11页
为解决粒子群优化(Particle Swarm Optimization,PSO)算法中存在的种群多样性和收敛性之间的矛盾,该文提出了一种具备反向学习和局部学习能力的粒子群优化算法(Reverse-learning and Local-learning PSO,RLPSO).该算法保留了初始种群中... 为解决粒子群优化(Particle Swarm Optimization,PSO)算法中存在的种群多样性和收敛性之间的矛盾,该文提出了一种具备反向学习和局部学习能力的粒子群优化算法(Reverse-learning and Local-learning PSO,RLPSO).该算法保留了初始种群中满足排异距离要求的多个较差粒子以及每个粒子的历史最差位置.当检测到算法陷入局部最优时,利用这些较差粒子的位置信息指导部分粒子以较快飞行速度进行反向学习,将其迅速牵引出局部最优区域.反向学习过程可改善粒子种群的多样性,保证了算法的全局探测能力;同时,利用较优粒子间的差分结果指导最优粒子进行局部学习与搜索,该过程可与粒子群的飞行过程并行执行,且局部学习的缩放因子可随进化过程动态调节.局部学习可提高算法的求解精度,保证算法的迅速收敛.实验结果表明,RLPSO算法同其他PSO算法相比,在高维函数优化中具有收敛速度快、求解精度高的特点. 展开更多
关键词 粒子算法 反向学习 局部搜索 多样性保持 高维函数优化
在线阅读 下载PDF
透镜成像反学习策略在粒子群算法中的应用 被引量:36
14
作者 喻飞 李元香 +2 位作者 魏波 徐星 赵志勇 《电子学报》 EI CAS CSCD 北大核心 2014年第2期230-235,共6页
在PSO中引入反向学习策略(Opposite-Based Learning)可使粒子在搜寻过程中总能找到当前解的反向位置,增加了接近全局最优解的机会.然而,OBL仅在演化初期作用显著,在演化后期则需通过变异等手段来提高其"开发"能力.针对该问题... 在PSO中引入反向学习策略(Opposite-Based Learning)可使粒子在搜寻过程中总能找到当前解的反向位置,增加了接近全局最优解的机会.然而,OBL仅在演化初期作用显著,在演化后期则需通过变异等手段来提高其"开发"能力.针对该问题,基于透镜成像原理,引入缩放因子和搜索半径两个可调参数进一步平衡了算法的"探索"和"开发"能力.实验表明该策略能够提高种群多样性和收敛性能. 展开更多
关键词 反向学习 粒子算法 透镜成像
在线阅读 下载PDF
基于折射原理反向学习模型的改进粒子群算法 被引量:28
15
作者 邵鹏 吴志健 +1 位作者 周炫余 邓长寿 《电子学报》 EI CAS CSCD 北大核心 2015年第11期2137-2144,共8页
对于粒子群优化算法易陷入局部最优的缺陷,反向学习策略对其的改进取得了较好的效果.然而,反向学习策略需要结合其它策略来提高算法后期的全局搜索能力,针对此缺陷,根据光的折射原理对反向学习策略的反向过程进行改进,提出反向学习的统... 对于粒子群优化算法易陷入局部最优的缺陷,反向学习策略对其的改进取得了较好的效果.然而,反向学习策略需要结合其它策略来提高算法后期的全局搜索能力,针对此缺陷,根据光的折射原理对反向学习策略的反向过程进行改进,提出反向学习的统一算法模型及基于折射原理反向学习模型的改进粒子群算法.实验与分析表明,与其它基于反向学习的粒子群算法相比,该模型更有效地改进了所提算法的全局搜索能力,提高了种群的多样性,从而提高了算法的收敛速度以及优化精度. 展开更多
关键词 智能优化算法 粒子优化算法 反向学习 折射原理
在线阅读 下载PDF
学习因子和时间因子随权重调整的粒子群算法 被引量:35
16
作者 马国庆 李瑞峰 刘丽 《计算机应用研究》 CSCD 北大核心 2014年第11期3291-3294,共4页
粒子群优化算法中惯性权重和学习因子的独自调整策略削弱了算法进化过程的统一性,很难适应复杂的非线性优化,为此提出一种利用惯性权重来控制学习因子的粒子群算法,通过增强权重和学习因子之间的相互作用来平衡算法的全局探索和局部开... 粒子群优化算法中惯性权重和学习因子的独自调整策略削弱了算法进化过程的统一性,很难适应复杂的非线性优化,为此提出一种利用惯性权重来控制学习因子的粒子群算法,通过增强权重和学习因子之间的相互作用来平衡算法的全局探索和局部开发能力。在此基础上引入时间因子,将其视做权重的线性函数,以便进一步提高迭代后期的局部开发能力并加快收敛速度。针对粒子群算法收敛性与多样性之间存在的矛盾,提出了边界限制和速度反弹的策略,避免粒子飞离区域造成种群多样性的减少,同时促使粒子快速收敛到全局最优。通过对多个基准测试函数进行优化分析,并将分析结果与其他粒子群算法计算结果进行对比,表明该算法能达到平衡粒子向个体学习和向群体学习能力的作用,提高了算法的寻优能力和收敛精度。 展开更多
关键词 粒子优化算法 学习因子 时间因子 边界限制 速度反弹
在线阅读 下载PDF
神经网络基于粒子群优化的学习算法研究 被引量:44
17
作者 刘洪波 王秀坤 孟军 《小型微型计算机系统》 CSCD 北大核心 2005年第4期638-640,共3页
研究神经网络基于粒子群优化的学习算法,将粒子群优化算法用于神经网络的学习训练,并与遗传算法进行了比较结果表明,神经网络基于粒子群优化的学习算法简单容易实现,而且能更快地收敛于最优解.
关键词 神经网络 粒子优化 学习算法
在线阅读 下载PDF
一种高斯反向学习粒子群优化算法 被引量:7
18
作者 占栋辉 卢厚清 +2 位作者 郝文宁 陈刚 靳大尉 《小型微型计算机系统》 CSCD 北大核心 2015年第5期1064-1068,共5页
针对粒子群算法在处理多峰复杂问题时,收敛速度慢且容易陷入局部最优的缺点,提出一种高斯反向学习粒子群优化算法(GOL-PSO).针对历史最优粒子间无法相互交流,增加一种高斯反向学习机制来提高粒子的学习能力,进而提高算法的搜索能力,另... 针对粒子群算法在处理多峰复杂问题时,收敛速度慢且容易陷入局部最优的缺点,提出一种高斯反向学习粒子群优化算法(GOL-PSO).针对历史最优粒子间无法相互交流,增加一种高斯反向学习机制来提高粒子的学习能力,进而提高算法的搜索能力,另外算法在更新公式中引入"历史最优平均值"因子来提高算法的收敛速度.经过在8个测试函数的仿真实验中,与一些改进的粒子群算法进行比较,GOL-PSO有5个测试函数的测试效果最好,且T检验结果表明算法结果有明显提高,同时算法收敛对比分析结果表明,本文算法具有良好的全局搜索能力和较快的收敛速度. 展开更多
关键词 粒子优化 高斯学习 反向学习 智能算法
在线阅读 下载PDF
混合均值中心反向学习粒子群优化算法 被引量:26
19
作者 孙辉 邓志诚 +2 位作者 赵嘉 王晖 谢海华 《电子学报》 EI CAS CSCD 北大核心 2019年第9期1809-1818,共10页
为平衡粒子群算法勘探与开发能力,本文提出混合均值中心反向学习粒子群优化算法.算法将所有粒子和部分优质粒子分别构造的均值中心进行贪心选择,得出的混合均值中心将对粒子所在区域进行精细搜索.同时对混合均值中心进行反向学习,使粒... 为平衡粒子群算法勘探与开发能力,本文提出混合均值中心反向学习粒子群优化算法.算法将所有粒子和部分优质粒子分别构造的均值中心进行贪心选择,得出的混合均值中心将对粒子所在区域进行精细搜索.同时对混合均值中心进行反向学习,使粒子能探索更多新区域.将本文算法与最新改进的粒子群算法、人工蜂群算法和差分算法在多种测试函数集上进行比较,实验结果验证了混合均值中心反向学习策略的有效性,算法的综合优化性能更强. 展开更多
关键词 全局寻优 混合均值中心 反向学习 粒子优化算法
在线阅读 下载PDF
基于粒子群优化的过程神经网络学习算法 被引量:29
20
作者 刘坤 谭营 何新贵 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第2期238-244,共7页
基于粒子群优化为过程神经元网络提出了一种新的学习算法。新算法在对网络输入函数和连接权函数进行正交基函数展开后,将网络中的结构参数和其他参数整合成一个粒子,再用粒子群优化算法进行全局优化。新算法不依赖于函数梯度信息,不需... 基于粒子群优化为过程神经元网络提出了一种新的学习算法。新算法在对网络输入函数和连接权函数进行正交基函数展开后,将网络中的结构参数和其他参数整合成一个粒子,再用粒子群优化算法进行全局优化。新算法不依赖于函数梯度信息,不需要手动调节网络结构。粒子群优化具有良好的全局优化性能和收敛性能,保证了过程神经元网络的全局学习能力和新学习算法的收敛能力,更好地发挥过程神经网络的逼近性能。两个实际预测问题的实验结果表明,基于粒子群优化的学习算法比现有的基于梯度的基函数展开方法以及误差反传神经网络模型具有更好的预测精度。 展开更多
关键词 过程神经元网络 学习算法 粒子优化 基函数展开
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部