图神经网络是一种强大的学习图数据的模型,通过节点信息嵌入和图卷积运算实现图结构数据的表示。图数据中节点的结构信息和节点的位置信息对获取图特征至关重要,但现有的图神经网络同时捕获位置信息和结构信息的表达能力有限。对此,提...图神经网络是一种强大的学习图数据的模型,通过节点信息嵌入和图卷积运算实现图结构数据的表示。图数据中节点的结构信息和节点的位置信息对获取图特征至关重要,但现有的图神经网络同时捕获位置信息和结构信息的表达能力有限。对此,提出了一种新的图神经网络——融合位置和结构信息的图神经网络(Positional and Structural Information with Graph Neural Networks, PSI-GNN)。PSI-GNN的核心思想在于利用编码器获取节点的位置和结构信息,并将这些信息特征嵌入到网络中。通过在网络中更新和传递这两种信息,PSI-GNN实现了对位置和结构信息的有效融合与利用,为解决上述问题提供了有效的解决方案。同时,为应对不同类型的图学习任务,PSI-GNN给予位置和结构信息以不同的权重来应对不同的下游任务。为了验证PSI-GNN的有效性,在多个基准图数据集上进行了实验。实验结果表明,PSI-GNN在节点级任务上最高提升了约14%,在图级任务上最高提升了约35%,验证了PSI-GNN在同时捕获位置和结构信息方面的有效性。展开更多
在汽车、住宿等服务行业中,与共享服务配套的个性化推荐方法的研究不足,降低了用户体检。以搭乘共享问题为例,考虑位置、社交、费用三方面因素,提出URLP(Users Recommendation Based on LBSNs and Payment)方法为用户推荐长期合作对象...在汽车、住宿等服务行业中,与共享服务配套的个性化推荐方法的研究不足,降低了用户体检。以搭乘共享问题为例,考虑位置、社交、费用三方面因素,提出URLP(Users Recommendation Based on LBSNs and Payment)方法为用户推荐长期合作对象。该方法首先基于用户行为矩阵计算车主与乘客的位置相似度,其次通过历史交易数据学习建立基于位置的社交信任网络,然后根据近期交易记录拟合用户的车费偏好函数,最后综合三类因素的影响自适应地产生推荐列表。实验结果表明URLP方法具有良好的准确率。虽然URLP方法以汽车共享为例提出,但方法同样可被应用于众包快递和配送等领域。展开更多
文摘图神经网络是一种强大的学习图数据的模型,通过节点信息嵌入和图卷积运算实现图结构数据的表示。图数据中节点的结构信息和节点的位置信息对获取图特征至关重要,但现有的图神经网络同时捕获位置信息和结构信息的表达能力有限。对此,提出了一种新的图神经网络——融合位置和结构信息的图神经网络(Positional and Structural Information with Graph Neural Networks, PSI-GNN)。PSI-GNN的核心思想在于利用编码器获取节点的位置和结构信息,并将这些信息特征嵌入到网络中。通过在网络中更新和传递这两种信息,PSI-GNN实现了对位置和结构信息的有效融合与利用,为解决上述问题提供了有效的解决方案。同时,为应对不同类型的图学习任务,PSI-GNN给予位置和结构信息以不同的权重来应对不同的下游任务。为了验证PSI-GNN的有效性,在多个基准图数据集上进行了实验。实验结果表明,PSI-GNN在节点级任务上最高提升了约14%,在图级任务上最高提升了约35%,验证了PSI-GNN在同时捕获位置和结构信息方面的有效性。
文摘在汽车、住宿等服务行业中,与共享服务配套的个性化推荐方法的研究不足,降低了用户体检。以搭乘共享问题为例,考虑位置、社交、费用三方面因素,提出URLP(Users Recommendation Based on LBSNs and Payment)方法为用户推荐长期合作对象。该方法首先基于用户行为矩阵计算车主与乘客的位置相似度,其次通过历史交易数据学习建立基于位置的社交信任网络,然后根据近期交易记录拟合用户的车费偏好函数,最后综合三类因素的影响自适应地产生推荐列表。实验结果表明URLP方法具有良好的准确率。虽然URLP方法以汽车共享为例提出,但方法同样可被应用于众包快递和配送等领域。