近年来,异质信息网络特别是基于位置的社交网络(Location-Based Social Networks,LBSN)中的社区发现已成为新兴的研究热点.然而,目前大多数社区发现研究仅考虑基于同质结构的社交网络,显然都已无法有效融合LBSN这种异质网络所包含的多...近年来,异质信息网络特别是基于位置的社交网络(Location-Based Social Networks,LBSN)中的社区发现已成为新兴的研究热点.然而,目前大多数社区发现研究仅考虑基于同质结构的社交网络,显然都已无法有效融合LBSN这种异质网络所包含的多模实体及其多维关系.为了应对该挑战性问题,本文提出了一种新的双重社区聚类与关联方法(Communities Clustering and Associating Method,CCAM),该方法先在LBSN的社交媒体层上,通过信息熵度量用户发布主题之间的相似性,进而再将相似用户兴趣聚类问题转换成求解基于模糊聚类的目标函数以获得重叠的兴趣主题簇结构.然后在地理位置层中,将用户-位置签到关系网络形成的二分图转换为超图模型,并采用超边聚类方式得到用户关于地理位置的兴趣点特征簇.最后,在兴趣主题簇与地理位置簇之间借助中间用户层的社交关系建立这两层异质簇间的关联性表示模型,并通过随机梯度下降法求解模型的局部最优解.在两个真实数据集Foursquare(NYC)和Yelp上的实验结果表明,本文提出的CCAM方法有效融合了用户-媒体发布关系、用户间社交关系、用户-位置签到关系等多维度关系,能准确获得LBSN中紧密关联的用户兴趣主题簇与地理位置簇,使得这双层社区结构不仅在外部结构特征与兴趣内聚性指标上都优于传统算法,并且还在兴趣主题推荐与位置兴趣点推荐方面的平均准确率提高至少32%.展开更多
随着基于位置社交网络(Location-Based Social Networks,LBSN)的快速发展,兴趣点(Point-of-Interest,POI)推荐为基于位置的服务提供了前所未有的机会.兴趣点推荐是一种基于上下文信息的位置感知的个性化推荐.然而用户-兴趣点矩阵的极端...随着基于位置社交网络(Location-Based Social Networks,LBSN)的快速发展,兴趣点(Point-of-Interest,POI)推荐为基于位置的服务提供了前所未有的机会.兴趣点推荐是一种基于上下文信息的位置感知的个性化推荐.然而用户-兴趣点矩阵的极端稀疏给兴趣点推荐的研究带来严峻挑战.为处理数据稀疏问题,文中利用兴趣点的地理、文本、社会、分类与流行度信息,并将这些因素进行有效地融合,提出一种上下文感知的概率矩阵分解兴趣点推荐算法,称为TGSC-PMF.首先利用潜在狄利克雷分配(Latent Dirichlet Allocation,LDA)模型挖掘兴趣点相关的文本信息学习用户的兴趣话题生成兴趣相关分数;其次提出一种自适应带宽核评估方法构建地理相关性生成地理相关分数;然后通过用户社会关系的幂律分布构建社会相关性生成社会相关分数;另外结合用户的分类偏好与兴趣点的流行度构建分类相关性生成分类相关分数,最后利用概率矩阵分解模型(Probabilistic Matrix Factorization,PMF),将兴趣、地理、社会、分类的相关分数进行有效地融合,从而生成推荐列表推荐给用户感兴趣的兴趣点.该文在一个真实LBSN签到数据集上进行实验,结果表明该算法相比其他先进的兴趣点推荐算法具有更好的推荐效果.展开更多
基于位置的社交网络服务(Location-based Social Network Service,LBSNS)被普遍认为是未来社交网络服务发展的重要趋势。LBSNS将信息分享与位置相结合,极大丰富了人们的移动社交内容。然而,由于位置信息与客观世界具有关联性,LBSNS中的...基于位置的社交网络服务(Location-based Social Network Service,LBSNS)被普遍认为是未来社交网络服务发展的重要趋势。LBSNS将信息分享与位置相结合,极大丰富了人们的移动社交内容。然而,由于位置信息与客观世界具有关联性,LBSNS中的位置共享可能泄露用户的身份信息。针对该隐患,文章提出一种基于定位欺骗的隐私攻击。该攻击首先采用Aircrack-ng和MDK3工具伪造AP,将目标用户的定位信息欺骗到指定位置;然后,利用该位置的特殊性以及社交网络的信息共享特点,获得目标用户的身份信息。文章剖析该隐私攻击的原理和实施步骤,并在若干主流社交网络应用中进行验证。验证表明,该攻击可以获取用户在其社交网络中的数字身份信息,从而导致用户隐私泄露。展开更多
随着互联网和全球定位技术的高速发展,基于位置的社交网络(location-based social network)不断涌现,鼓励用户通过签到的形式发布个人动态并实时分享地理位置。海量的签到数据为挖掘用户偏好提供了机会,有利于提供基于位置的服务,如兴趣...随着互联网和全球定位技术的高速发展,基于位置的社交网络(location-based social network)不断涌现,鼓励用户通过签到的形式发布个人动态并实时分享地理位置。海量的签到数据为挖掘用户偏好提供了机会,有利于提供基于位置的服务,如兴趣点(point of interest)推荐。兴趣点推荐旨在通过分析用户历史出行记录来得到用户的位置偏好,从而在未来为用户推荐新的地点,同时也能帮助广告商精准地投放用户感兴趣的广告。地点类别往往能够精准地提炼出位置的上下文语义,而现有的兴趣点研究大多都直接去计算用户对地点的偏好,没有有效地结合类别信息。通过对社交网站Yelp的公开数据集进行分析,发现相比访问共同的地点,朋友之间更容易访问相同的类别。因此,考虑朋友间地点类别偏好关系比直接考虑用户间项目偏好的关系更为合适。文中提出一种结合地点类别和社交网络的兴趣点推荐算法CSRS,先从用户历史签到记录获取用户地点类别偏好,然后考虑朋友间的类别偏好差异性。在Yelp数据集上的实验结果表明,与其他算法相比,文中提出的算法在准确率和召回率指标上都取得了更好的结果。展开更多
流行社交位置是指大多数人日常生活中经常访问的位置,其广泛应用于推荐系统、定向广告应用等领域。随着基于位置的社交网络(Location-Based Social Network,LBSN)的迅速发展,流行社交位置的挖掘成为时空数据挖掘中的一个研究热点。然而...流行社交位置是指大多数人日常生活中经常访问的位置,其广泛应用于推荐系统、定向广告应用等领域。随着基于位置的社交网络(Location-Based Social Network,LBSN)的迅速发展,流行社交位置的挖掘成为时空数据挖掘中的一个研究热点。然而,现有的研究主要是从LBSN中挖掘流行社交位置,忽略了流行社交位置的时间因素,因此,文中提出了带有时间标签的流行社交位置发现算法。该算法首先量化LBSN数据集中的时间信息,得到个体用户带有时间标签的频繁社交位置集合;然后计算这些带时间标签的位置在群体用户中的流行度;最后识别出符合要求的带时间标签的流行社交位置。文中采用约10个月的Foursquare东京用户签到数据对该算法的效率和正确性进行验证,结果表明,该算法能够较为准确地发现带有时间标签的流行社交位置。展开更多
文摘近年来,异质信息网络特别是基于位置的社交网络(Location-Based Social Networks,LBSN)中的社区发现已成为新兴的研究热点.然而,目前大多数社区发现研究仅考虑基于同质结构的社交网络,显然都已无法有效融合LBSN这种异质网络所包含的多模实体及其多维关系.为了应对该挑战性问题,本文提出了一种新的双重社区聚类与关联方法(Communities Clustering and Associating Method,CCAM),该方法先在LBSN的社交媒体层上,通过信息熵度量用户发布主题之间的相似性,进而再将相似用户兴趣聚类问题转换成求解基于模糊聚类的目标函数以获得重叠的兴趣主题簇结构.然后在地理位置层中,将用户-位置签到关系网络形成的二分图转换为超图模型,并采用超边聚类方式得到用户关于地理位置的兴趣点特征簇.最后,在兴趣主题簇与地理位置簇之间借助中间用户层的社交关系建立这两层异质簇间的关联性表示模型,并通过随机梯度下降法求解模型的局部最优解.在两个真实数据集Foursquare(NYC)和Yelp上的实验结果表明,本文提出的CCAM方法有效融合了用户-媒体发布关系、用户间社交关系、用户-位置签到关系等多维度关系,能准确获得LBSN中紧密关联的用户兴趣主题簇与地理位置簇,使得这双层社区结构不仅在外部结构特征与兴趣内聚性指标上都优于传统算法,并且还在兴趣主题推荐与位置兴趣点推荐方面的平均准确率提高至少32%.
文摘基于位置的社交网络服务(Location-based Social Network Service,LBSNS)被普遍认为是未来社交网络服务发展的重要趋势。LBSNS将信息分享与位置相结合,极大丰富了人们的移动社交内容。然而,由于位置信息与客观世界具有关联性,LBSNS中的位置共享可能泄露用户的身份信息。针对该隐患,文章提出一种基于定位欺骗的隐私攻击。该攻击首先采用Aircrack-ng和MDK3工具伪造AP,将目标用户的定位信息欺骗到指定位置;然后,利用该位置的特殊性以及社交网络的信息共享特点,获得目标用户的身份信息。文章剖析该隐私攻击的原理和实施步骤,并在若干主流社交网络应用中进行验证。验证表明,该攻击可以获取用户在其社交网络中的数字身份信息,从而导致用户隐私泄露。
文摘随着互联网和全球定位技术的高速发展,基于位置的社交网络(location-based social network)不断涌现,鼓励用户通过签到的形式发布个人动态并实时分享地理位置。海量的签到数据为挖掘用户偏好提供了机会,有利于提供基于位置的服务,如兴趣点(point of interest)推荐。兴趣点推荐旨在通过分析用户历史出行记录来得到用户的位置偏好,从而在未来为用户推荐新的地点,同时也能帮助广告商精准地投放用户感兴趣的广告。地点类别往往能够精准地提炼出位置的上下文语义,而现有的兴趣点研究大多都直接去计算用户对地点的偏好,没有有效地结合类别信息。通过对社交网站Yelp的公开数据集进行分析,发现相比访问共同的地点,朋友之间更容易访问相同的类别。因此,考虑朋友间地点类别偏好关系比直接考虑用户间项目偏好的关系更为合适。文中提出一种结合地点类别和社交网络的兴趣点推荐算法CSRS,先从用户历史签到记录获取用户地点类别偏好,然后考虑朋友间的类别偏好差异性。在Yelp数据集上的实验结果表明,与其他算法相比,文中提出的算法在准确率和召回率指标上都取得了更好的结果。
文摘流行社交位置是指大多数人日常生活中经常访问的位置,其广泛应用于推荐系统、定向广告应用等领域。随着基于位置的社交网络(Location-Based Social Network,LBSN)的迅速发展,流行社交位置的挖掘成为时空数据挖掘中的一个研究热点。然而,现有的研究主要是从LBSN中挖掘流行社交位置,忽略了流行社交位置的时间因素,因此,文中提出了带有时间标签的流行社交位置发现算法。该算法首先量化LBSN数据集中的时间信息,得到个体用户带有时间标签的频繁社交位置集合;然后计算这些带时间标签的位置在群体用户中的流行度;最后识别出符合要求的带时间标签的流行社交位置。文中采用约10个月的Foursquare东京用户签到数据对该算法的效率和正确性进行验证,结果表明,该算法能够较为准确地发现带有时间标签的流行社交位置。