同化大量观测资料可以有效地改进模式预报结果,但不同观测对预报的影响有着显著差异,合理评估观测对预报的贡献是数值模式中最具挑战性的诊断之一。本文采用基于伴随的预报对观测的敏感性(Forecast Sensitivity to Observation,简称FSO...同化大量观测资料可以有效地改进模式预报结果,但不同观测对预报的影响有着显著差异,合理评估观测对预报的贡献是数值模式中最具挑战性的诊断之一。本文采用基于伴随的预报对观测的敏感性(Forecast Sensitivity to Observation,简称FSO)方法,构建WRFDA(Weather Research and Forecasting model’sData Assimilation)框架下的WRFDA-FSO系统。基于2019年9月超大城市项目在北京地区获取的风廓线雷达(Wind Profile Radar,简称WPR)和地基微波辐射计(Microwave Radiometer,简称MWR)观测数据,利用WRFDA-FSO系统,开展观测对WRF模式12 h预报的影响试验,并分析风温湿观测对预报的贡献。结果表明:(1)同化的观测资料(MWR、WPR、Sound、Synop和Geoamv)均减小了WRF模式12 h预报误差,对预报为正贡献,其中MWR观测对预报的影响最大,WPR风场观测对预报的改进效果优于Sound的风场观测。(2)WPR的U、V观测和MWR的T、Q观测中,V观测和T观测对预报的正贡献值更高,对预报的改进效果更优。(3)WPR和MWR多数高度层的观测均减小了预报误差,对预报为正贡献,其中MWR的T观测对预报的正贡献主要位于近地面800 h Pa以下。展开更多
利用基于集合预报的相关方法对2009年7月23日发生在北京及周边地区的暴雨过程的观测敏感区进行了分析。通过WRF(Weather Research Forecast)三维变分方法对初始场进行随机扰动,形成30个初始集合样本,做了预报时效为12 h的集合预报。利...利用基于集合预报的相关方法对2009年7月23日发生在北京及周边地区的暴雨过程的观测敏感区进行了分析。通过WRF(Weather Research Forecast)三维变分方法对初始场进行随机扰动,形成30个初始集合样本,做了预报时效为12 h的集合预报。利用该方法分析检验区(北京及周边地区)累积降水[14:00(北京时间,下同)至20:00]相对于初始时刻(08:00)各基本要素的敏感性,确定感性要素及其对应的区域。研究发现初步确定的敏感性要素为水汽和温度,对应的敏感区分别位于北京的西南侧和北京的东北侧,且通过实况分析可知初步确定的敏感性要素和对应的敏感区具有明确的物理意义。还进一步通过观测系统模拟试验(OSSE)的资料同化验证所确定的敏感区,结果表明在水汽对应的敏感区内同化水汽对降水的预报结果有明显的改进;在温度对应的敏感区内同化温度,降水的预报准确率有了明显的提高,说明了初步确定的敏感性要素和敏感区的正确性。在水汽对应的敏感区内同化水汽的同时在温度对应的敏感区内同化温度,使降水预报的技巧有大幅度的提高,说明了温度和水汽的共同作用对提高降水预报准确率贡献最大。因此,通过基于集合预报的相关方法能够快速的确定敏感区。研究结果将为确定北京暴雨的观测敏感区提供参考。展开更多
文摘同化大量观测资料可以有效地改进模式预报结果,但不同观测对预报的影响有着显著差异,合理评估观测对预报的贡献是数值模式中最具挑战性的诊断之一。本文采用基于伴随的预报对观测的敏感性(Forecast Sensitivity to Observation,简称FSO)方法,构建WRFDA(Weather Research and Forecasting model’sData Assimilation)框架下的WRFDA-FSO系统。基于2019年9月超大城市项目在北京地区获取的风廓线雷达(Wind Profile Radar,简称WPR)和地基微波辐射计(Microwave Radiometer,简称MWR)观测数据,利用WRFDA-FSO系统,开展观测对WRF模式12 h预报的影响试验,并分析风温湿观测对预报的贡献。结果表明:(1)同化的观测资料(MWR、WPR、Sound、Synop和Geoamv)均减小了WRF模式12 h预报误差,对预报为正贡献,其中MWR观测对预报的影响最大,WPR风场观测对预报的改进效果优于Sound的风场观测。(2)WPR的U、V观测和MWR的T、Q观测中,V观测和T观测对预报的正贡献值更高,对预报的改进效果更优。(3)WPR和MWR多数高度层的观测均减小了预报误差,对预报为正贡献,其中MWR的T观测对预报的正贡献主要位于近地面800 h Pa以下。
文摘利用基于集合预报的相关方法对2009年7月23日发生在北京及周边地区的暴雨过程的观测敏感区进行了分析。通过WRF(Weather Research Forecast)三维变分方法对初始场进行随机扰动,形成30个初始集合样本,做了预报时效为12 h的集合预报。利用该方法分析检验区(北京及周边地区)累积降水[14:00(北京时间,下同)至20:00]相对于初始时刻(08:00)各基本要素的敏感性,确定感性要素及其对应的区域。研究发现初步确定的敏感性要素为水汽和温度,对应的敏感区分别位于北京的西南侧和北京的东北侧,且通过实况分析可知初步确定的敏感性要素和对应的敏感区具有明确的物理意义。还进一步通过观测系统模拟试验(OSSE)的资料同化验证所确定的敏感区,结果表明在水汽对应的敏感区内同化水汽对降水的预报结果有明显的改进;在温度对应的敏感区内同化温度,降水的预报准确率有了明显的提高,说明了初步确定的敏感性要素和敏感区的正确性。在水汽对应的敏感区内同化水汽的同时在温度对应的敏感区内同化温度,使降水预报的技巧有大幅度的提高,说明了温度和水汽的共同作用对提高降水预报准确率贡献最大。因此,通过基于集合预报的相关方法能够快速的确定敏感区。研究结果将为确定北京暴雨的观测敏感区提供参考。