期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
UniRec:融合项目表示一致性信息的会话推荐模型
1
作者 翟雨欣 彭敦陆 朱金玲 《小型微型计算机系统》 北大核心 2025年第4期856-862,共7页
会话推荐是根据匿名的交互序列预测下一个商品的任务.基于用户历史行为准确建模用户的下一个动作对提高推荐性能至关重要.近些年,许多研究者使用对比学习来改进向量的表示以提高建模的准确性.但现有的基于对比学习的方法大多数都涉及复... 会话推荐是根据匿名的交互序列预测下一个商品的任务.基于用户历史行为准确建模用户的下一个动作对提高推荐性能至关重要.近些年,许多研究者使用对比学习来改进向量的表示以提高建模的准确性.但现有的基于对比学习的方法大多数都涉及复杂的建模过程,过度依赖于模型结构,从而忽视了优化项目表示空间的重要性.为此,本文提出了一种融合项目表示一致性信息与会话信息的会话推荐模型(UniRec).模型通过构建位置感知图来提取细粒度的全局级信息,并利用图注意力网络(GAT)学习项目间成对的过渡关系捕获会话级信息,引入额外的损失函数关注项目表示空间的一致性.最后,使用融合函数获得最终项目表示预测出下一个可能交互的item.在3个真实数据集上的对比实验结果表明,相对基线模型,本文所提模型在P@20、MRR@20等指标上具有一定的提升. 展开更多
关键词 基于会话的推荐系统 一致性信息 对比学习 图神经网络
在线阅读 下载PDF
考虑用户意图和时间间隔的会话型深度学习推荐系统 被引量:8
2
作者 刘浩翰 吕鑫 李建伏 《计算机应用与软件》 北大核心 2021年第3期190-195,223,共7页
基于循环神经网络的会话型推荐系统在建模用户点击行为时,无法同时考虑用户行为之间的时间间隔和用户的主要意图。针对该问题,在现有的基于注意力机制的会话型推荐系统和仅考虑用户行为时间间隔的Time-LSTM的深度学习模型的基础上提出... 基于循环神经网络的会话型推荐系统在建模用户点击行为时,无法同时考虑用户行为之间的时间间隔和用户的主要意图。针对该问题,在现有的基于注意力机制的会话型推荐系统和仅考虑用户行为时间间隔的Time-LSTM的深度学习模型的基础上提出一个新的基于会话的推荐系统TASR。利用Time-LSTM建模时间间隔影响用户行为,并利用注意力机制捕获用户的主要意图。在两个公开数据集上的实验验证了该算法的有效性。 展开更多
关键词 行为建模 基于会话的推荐系统 注意力机制 时间间隔 用户意图
在线阅读 下载PDF
多通道图神经网络的层次化融合模型用于增强会话的推荐 被引量:1
3
作者 岳彩梦 彭敦陆 《小型微型计算机系统》 CSCD 北大核心 2024年第7期1599-1607,共9页
基于会话的推荐系统(SBR)旨在根据用户历史的行为去预测下一个最有可能点击的项目.一方面由于会话推荐序列较短,可用的信息比较少,另一方面会话推荐多为匿名用户,没有丰富的用户信息,导致无法获得用户历史的交互行为或者用户的偏好,这为... 基于会话的推荐系统(SBR)旨在根据用户历史的行为去预测下一个最有可能点击的项目.一方面由于会话推荐序列较短,可用的信息比较少,另一方面会话推荐多为匿名用户,没有丰富的用户信息,导致无法获得用户历史的交互行为或者用户的偏好,这为SBR带来了挑战.现有基于SBR研究方法大都是将会话序列建模为成对的图结构化数据或者建模为超图结构化数据,这种将会话序列建模为单一图的方法无法捕获更完整的项目转化信息,从而降低模型的准确度.为了充分考虑会话之间的相互影响,本文提出了一种多通道图神经网络的层次化融合模型用于增强会话的推荐(HFMC-SBR).模型首先将会话序列建模为全局图、局部图和超图数据,然后分别使用全局编码层和局部编码层以及超图卷机神经网络来捕获节点之间复杂的依赖性关系,学习3种项目嵌入,进而获得全局、局部以及超图项目表示信息,进而引入3层融合模型将三通道融合形成项目表示获得完整的项目转化信息,同时使用注意力机制和反向位置编码对全局上下文和局部上下文信息以及超图通道捕获的会话之间的高阶关系进行有效的融合.实验表明,本文所提出的模型HFMC-SBR,在Tmall、Diginetica和Yoochoose3种数据集上所表现的性能优于基线模型. 展开更多
关键词 基于会话的推荐系统 多通道信息融合 层级融合
在线阅读 下载PDF
基于会话推荐的动态层次意图建模
4
作者 张梦菲 郭诚 +4 位作者 潘茂 金佳琪 辛增卫 方金云 陈树肖 《高技术通讯》 CAS 2022年第4期367-378,共12页
为解决当前基于会话的推荐系统方法在建模用户偏好时存在拍取的用户兴趣表示单一、静态问题,提出了一种动态层次意图学习网络。该网络同时考虑用户的多层意图和动态序列行为,设计了动态卷积神经网络和兴趣聚集门2个模块,并在每层抽取用... 为解决当前基于会话的推荐系统方法在建模用户偏好时存在拍取的用户兴趣表示单一、静态问题,提出了一种动态层次意图学习网络。该网络同时考虑用户的多层意图和动态序列行为,设计了动态卷积神经网络和兴趣聚集门2个模块,并在每层抽取用户的特定粒度意图。此外还提出一个层级意图上下位损失函数,来约束用户意图的层次性。最后使用融合多种粒度的意图会话表示进行推荐。在3个真实数据集上的大量实验表明,模型在准确性和多样性上同时优于其他基于会话的推荐方法。 展开更多
关键词 基于会话的推荐系统 推荐系统 层次性意图 动态用户兴趣 动态卷积
在线阅读 下载PDF
基于图表示学习的会话感知推荐模型 被引量:20
5
作者 曾义夫 牟其林 +2 位作者 周乐 蓝天 刘峤 《计算机研究与发展》 EI CSCD 北大核心 2020年第3期590-603,共14页
根据历史记录预测用户的下一次点击(即基于会话的推荐)是推荐系统中一个重要的子任务.重点研究会话推荐中如何在不牺牲预测准确性的情况下缓解用户的兴趣漂移问题,提高用户满意度.基本思想是从全局统计的角度出发,建立一个用于表示物品... 根据历史记录预测用户的下一次点击(即基于会话的推荐)是推荐系统中一个重要的子任务.重点研究会话推荐中如何在不牺牲预测准确性的情况下缓解用户的兴趣漂移问题,提高用户满意度.基本思想是从全局统计的角度出发,建立一个用于表示物品先后点击顺序的物品依赖关系图,据此提出一种图表示学习算法,生成可以保留关联物品间复杂关联关系的物品向量表达,最后,基于长短期记忆机制,将物品向量表达作为“固定”输入,从而构建一个可以同时捕捉用户长期兴趣和短期兴趣的会话感知推荐模型.不同于其他相关工作,首次提出将下一次点击预测模型建立在“固定”物品表达的基础上.在公开数据集上的实验结果表明:提出的推荐模型在预测准确性和推荐多样新颖性上的表现优于其他相关方法. 展开更多
关键词 基于会话的推荐系统 行为建模 图表示学习 用户兴趣 神经网络
在线阅读 下载PDF
基于时序推理的分层会话感知推荐模型 被引量:2
6
作者 罗鹏宇 吴乐 +2 位作者 吕扬 袁堃平 洪日昌 《计算机科学》 CSCD 北大核心 2020年第11期73-79,共7页
基于会话的推荐系统,旨在根据匿名会话预测用户下一时刻的行为,这在很多互联网服务中颇为常见。该问题的主要挑战在于,如何模拟目标会话中用户行为的时序关系,并利用有限长度的会话刻画用户的兴趣。现有的方法根据目标会话中邻近物品的... 基于会话的推荐系统,旨在根据匿名会话预测用户下一时刻的行为,这在很多互联网服务中颇为常见。该问题的主要挑战在于,如何模拟目标会话中用户行为的时序关系,并利用有限长度的会话刻画用户的兴趣。现有的方法根据目标会话中邻近物品的时序关系来建模用户的行为模式,并对目标会话中的物品信息进行选择性地保留和利用,进而聚合为会话的整体特征,并将其作为目标会话对应的用户兴趣。为了更好地建模用户行为模式和用户兴趣,文中提出了一种基于时序推理的分层会话感知推荐模型。一方面,不同于以往工作对目标会话中"邻近物品即相关"的假设,文中对目标会话中交互物品之间的依赖关系进行推理,并在会话中学习更灵活的时序关系,以建模用户的行为模式;另一方面,从目标会话中的物品和物品特征两个层次进行物品信息的聚合,实现更细粒度的用户兴趣推断。在两个公共数据集上的实验中,所提模型均优于其他基准模型,验证了其有效性。 展开更多
关键词 基于会话的推荐系统 匿名会话 时序推理 用户兴趣 神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部