期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于改进域对抗网络的齿轮箱跨工况故障诊断
1
作者 贾宝惠 苏家成 高源 《电子测量技术》 北大核心 2025年第3期83-91,共9页
针对不同工况下采集的齿轮箱振动数据特征分布不一致和噪声成分影响迁移效果的问题,本文提出了一种结合注意力机制的域对抗迁移网络的深度迁移学习故障诊断方法。首先,将带标签的振动信号和未带标签的振动信号通过固定长度的数据分割方... 针对不同工况下采集的齿轮箱振动数据特征分布不一致和噪声成分影响迁移效果的问题,本文提出了一种结合注意力机制的域对抗迁移网络的深度迁移学习故障诊断方法。首先,将带标签的振动信号和未带标签的振动信号通过固定长度的数据分割方法构建成数据集;其次,为减少噪声样本带来的负迁移影响,采用卷积注意力模块(CBAM)以及判别损失项辅助特征提取器提取具有区分度的特征,加强分类决策边界;最后,为解决数据特征分布不一致的问题,采用多核最大均值差异(MK-MMD)对齐源域和目标域的全局分布,并利用对抗机制对齐两域的子领域分布。在公开的变工况齿轮箱故障数据集上进行试验验证,结果表明,所提方法的平均识别准确率达到96.25%以上,并通过与其他诊断方法的对比分析,验证了所提方法的有效性和优越性。 展开更多
关键词 判别损失项 卷积注意力模块 对抗迁移网络 迁移学习 故障诊断
在线阅读 下载PDF
基于改进加权域对抗网络和混合注意力机制的水电机组滚动轴承故障诊断方法
2
作者 胡志平 王焕河 +2 位作者 田凡 陈万凯 许颜贺 《中国农村水利水电》 北大核心 2025年第1期155-160,共6页
针对水电机组滚动轴承可采集故障样本匮乏、难以完成高效准确故障诊断目标的问题,提出一种基于改进加权域对抗网络(improved weighting domain adversarial network,IWDAN)和混合注意力机制(hybrid attention mechanism,HAM)的机组轴承... 针对水电机组滚动轴承可采集故障样本匮乏、难以完成高效准确故障诊断目标的问题,提出一种基于改进加权域对抗网络(improved weighting domain adversarial network,IWDAN)和混合注意力机制(hybrid attention mechanism,HAM)的机组轴承故障诊断方法。首先,利用小波变换(wavelet transform,WT)将轴承一维振动信号转换为二维时频图,实现更高维度的信号表征;其次,利用IWDAN对源域时频图进行自适应加权,提取更为有效的域间共享特征;最后,将所提取特征作为HAM的输入,有效抑制冗余信息干扰,显著提升诊断效率与精度。通过机组轴承诊断实例分析,验证所提IWDAN-HAM方法具有更加优越的性能,可为机组维护策略的制定提供可靠数据基础。 展开更多
关键词 水电机组 滚动轴承 故障诊断 域对抗网络 注意力机制
在线阅读 下载PDF
基于改进域对抗网络的新能源基地风光时序功率曲线生成方法 被引量:7
3
作者 任佳星 孙英云 +3 位作者 秦继朔 刘栋 郭国栋 张柯欣 《电网技术》 EI CSCD 北大核心 2024年第8期3409-3417,I0119,I0120,共11页
准确刻画风光时序功率曲线对于加快推动新能源大规模并网、指导联合发电系统规划运行具有重要意义。针对我国沙漠、戈壁、荒漠等地区新建大型风电光伏发电基地无历史功率数据可利用的现状,该文提出基于改进域对抗网络(improved domain a... 准确刻画风光时序功率曲线对于加快推动新能源大规模并网、指导联合发电系统规划运行具有重要意义。针对我国沙漠、戈壁、荒漠等地区新建大型风电光伏发电基地无历史功率数据可利用的现状,该文提出基于改进域对抗网络(improved domain adversarial neural networks,IDANN)的新能源基地风光时序功率曲线生成方法。以历史气象和功率数据充足的新能源场站作为源域,仅有气象数据的新建基地作为目标域。将源域上学习的输入气象信息到输出风光功率的非线性映射知识迁移到目标域,并添加最大均值差异(maximum mean discrepancy,MMD)作为度量域间特征分布相似性的损失函数以降低目标域泛化误差。最后采用实际风光场站算例验证所提方法的有效性,并进一步表明该方法的实用价值和意义。 展开更多
关键词 风光时序功率 改进域对抗网络 沙戈荒 迁移学习
在线阅读 下载PDF
基于深度特征提取和对抗域适应网络的滚动轴承故障诊断 被引量:8
4
作者 陈凯 张礼华 +1 位作者 赵恒 陈景铭 《制造技术与机床》 北大核心 2023年第1期9-15,共7页
实现轴承的智能化诊断是实现旋转设备的智能化诊断的关键。在轴承故障诊断实际情况中存在特征提取不完全、变工况情况下传统的诊断方法效率低的问题。针对这个问题,提出了一种组合方法。在该方法中使用具有宽卷积核的卷积神经网络与长... 实现轴承的智能化诊断是实现旋转设备的智能化诊断的关键。在轴承故障诊断实际情况中存在特征提取不完全、变工况情况下传统的诊断方法效率低的问题。针对这个问题,提出了一种组合方法。在该方法中使用具有宽卷积核的卷积神经网络与长短时记忆网络组合的深度特征提取网络对原始的振动信号进行深层次的特征提取,其次以对抗域适应网络实现源域与目标域间的知识迁移,解决了变工况情况下的跨域诊断能力不理想的问题。并对所提方法进行了验证,实验结果表明,所提方法能够有效地实现对轴承振动信号的深度提取以及识别变工况情况下的轴承故障类型,提高了跨域诊能力。 展开更多
关键词 深度特征提取 轴承 长短时记忆网络 对抗适应网络 迁移学习
在线阅读 下载PDF
基于改进域对抗迁移学习的电力系统暂态稳定自适应评估 被引量:12
5
作者 申锦鹏 杨军 +3 位作者 李蕊 张俊 王晓 王飞跃 《电力系统自动化》 EI CSCD 北大核心 2022年第23期67-75,共9页
在电力系统运行方式和拓扑结构频繁变化时,数据驱动的电力系统暂态稳定评估方法在实际系统中的应用效果会变差。针对这一问题,提出了一种基于改进域对抗迁移学习的暂态稳定自适应评估方法。根据电力系统量测数据的特点,设计了深度神经网... 在电力系统运行方式和拓扑结构频繁变化时,数据驱动的电力系统暂态稳定评估方法在实际系统中的应用效果会变差。针对这一问题,提出了一种基于改进域对抗迁移学习的暂态稳定自适应评估方法。根据电力系统量测数据的特点,设计了深度神经网络,并在运行场景改变后,利用梯度翻转层引入域对抗训练机制,提取源域和目标域之间的公共特征,缩小域间分布差异,减少训练样本需求。同时,同步迁移源域的模型知识并更新特征提取器参数,保证模型更新的快速性和准确性。IEEE 39节点系统和美国南卡罗莱纳州500节点电网测试结果表明,通过合理迁移原始数据以及模型,所提方法可减少目标域训练样本规模,具有快速性、通用性和较强的自适应性。 展开更多
关键词 暂态稳定评估 迁移学习 对抗神经网络 电力系统
在线阅读 下载PDF
面向无人机辐射源个体识别的域适应模型设计 被引量:1
6
作者 查浩然 刘畅 +1 位作者 王巨震 林云 《信号处理》 CSCD 北大核心 2024年第4期650-660,共11页
近年来,无人机在军用领域和民用领域得到了广泛的应用,给人们带来极大便利的同时也带来了重大的安全挑战,精准识别无人机的需求日益迫切,其中无人机辐射源个体识别方法得到广泛关注和深入研究。基于深度学习的方法因其卓越性能而受到广... 近年来,无人机在军用领域和民用领域得到了广泛的应用,给人们带来极大便利的同时也带来了重大的安全挑战,精准识别无人机的需求日益迫切,其中无人机辐射源个体识别方法得到广泛关注和深入研究。基于深度学习的方法因其卓越性能而受到广泛关注,然而这些方法大多依赖于大量独立同分布的训练数据,而在实际应用中,无人机射频数据的采集和标注充满挑战,训练数据和测试数据之间往往存在较大的分布差异。针对无人机射频数据采集和标注困难、训练数据和测试数据分布差异大等现实应用需求,提出了一种面向无人机辐射源个体识别的域适应模型设计方法。采用自助抽样法对无人机数据集进行重采样,增加数据集中的样本多样性。将Transformer编码器与域对抗神经网络结合,使特征在高斯分布下进行优化。引入最大均值差异作为度量方法来减少训练过程中源域和目标域之间的分布差异。基于权重的加权投票法增强模型的泛化性,提高模型适应新环境的能力。实验结果表明,基于3种典型环境,构建6种域适应场景,本文所提的方法识别率高于现有方法约5%。此外,还研究了源域样本数量和目标域样本数量对域适应效果的影响,在目标域含有少量样本时依然可以达到较高的性能,较好地平衡了无人机辐射源个体识别精确度与泛化性、可靠性的需求。 展开更多
关键词 辐射源个体识别 度量学习 对抗神经网络 集成学习
在线阅读 下载PDF
基于多模态射频信号融合的粮食水分检测 被引量:2
7
作者 杨卫东 郭思君 +2 位作者 段珊珊 胡鹏明 单少伟 《中国农机化学报》 北大核心 2025年第2期132-138,共7页
水分检测是粮食存储和贸易中不可或缺的一环,利用各种射频传感技术可以实现无损、快速地粮食水分检测。然而,现有方案都是基于单一种类射频信号开发的,针对不同射频信号需要训练对应检测模型,人力成本增加。基于此,提出一种融合多模态... 水分检测是粮食存储和贸易中不可或缺的一环,利用各种射频传感技术可以实现无损、快速地粮食水分检测。然而,现有方案都是基于单一种类射频信号开发的,针对不同射频信号需要训练对应检测模型,人力成本增加。基于此,提出一种融合多模态射频信号的粮食水分检测方法RF—Grain。首先,针对多径环境和硬件缺陷引起的噪声问题,提出一种WiFi信道状态信息(CSI)数据预处理方法;其次,提出一种域对抗神经网络模型,用以消除不同类型射频信号提取的粮食水分特征分布差异;最后,设计使用3种不同射频传感技术进行粮食水分检测的试验,以卷积神经网络作为对比,对所提出方法的性能进行评估,并与现有方法进行对比分析。试验表明,所提出方法能够有效检测5种不同含水率的粮食样品,总体准确率为分别为98.87%、96.22%和96.56%,优于传统的卷积神经网络,具有准确率高、泛化性好等优点,为粮食水分无损检测研究提供有力的技术支撑。 展开更多
关键词 粮食 水分含量检测 射频传感 多模态 对抗神经网络
在线阅读 下载PDF
基于度量学习的无监督域适应方法及其在死亡风险预测上的应用 被引量:2
8
作者 蔡德润 李红燕 《计算机研究与发展》 EI CSCD 北大核心 2022年第3期674-682,共9页
近年来,深度学习模型已在医疗领域的预测任务上得到广泛应用,并取得了不错的效果.然而,深度学习模型常会面临带标签训练数据不足、整体数据分布偏移和类别之间数据分布偏移的问题,导致模型预测的准确度下降.为解决上述问题,提出一种基... 近年来,深度学习模型已在医疗领域的预测任务上得到广泛应用,并取得了不错的效果.然而,深度学习模型常会面临带标签训练数据不足、整体数据分布偏移和类别之间数据分布偏移的问题,导致模型预测的准确度下降.为解决上述问题,提出一种基于域对抗和加性余弦间隔损失的无监督域适应方法(additive margin softmax based adversarial domain adaptation,AMS-ADA).首先,该方法使用带有注意力机制的双向长短程记忆网络来提取特征.其次,该方法引入了生成对抗网络的思想,以域对抗的形式减少了整体数据之间数据分布偏移.然后,该方法引入了度量学习的思想,以最大化角度空间内决策边界的方式进一步减少了类别之间的数据分布偏移.该方法能够提升域适应的效果与模型预测的准确度.在真实世界的医疗数据集上进行了重症监护病人死亡风险预测任务,实验结果表明:由于该方法相较于其他5种基线模型能够更好地解决数据分布偏移的问题,取得比其他基线模型更好的分类效果. 展开更多
关键词 无监督适应 深度学习 死亡风险预测 域对抗网络 度量学习 注意力机制
在线阅读 下载PDF
基于S-MCLSTM和DANN的滚动轴承剩余寿命预测方法 被引量:1
9
作者 董志民 董洁超 《计算机应用研究》 CSCD 北大核心 2024年第9期2787-2793,共7页
针对在不同工作条件和不同故障形式下,滚动轴承剩余寿命预测泛化能力差和精确度不高的问题,提出一种基于孪生多卷积长短时记忆网络(S-MCLSTM)和域对抗网络(DANN)的剩余寿命预测方法。首先针对不同的工作条件对退化过程的影响,提出基于S-... 针对在不同工作条件和不同故障形式下,滚动轴承剩余寿命预测泛化能力差和精确度不高的问题,提出一种基于孪生多卷积长短时记忆网络(S-MCLSTM)和域对抗网络(DANN)的剩余寿命预测方法。首先针对不同的工作条件对退化过程的影响,提出基于S-MCLSTM的差异化特征提取器以提取一定时间间隔的两个样本之间的差异化特征。同时,进一步使用工作条件判别器与差异化特征提取器进行对抗训练,减少由于工作条件的原因产生的冗余特征。之后针对故障形式对退化过程的影响,设计了故障诊断器用于和差异化特征提取器对抗训练。最后,考虑到滚动轴承一般退化过程中,不同阶段的退化过程与特征之间的映射关系可能存在的差异,提出了阶段判别器,并在不同阶段应用不同的剩余寿命预测器进行预测。最终在西安交通大学XJTU-SY轴承数据集上的实验表明,该方法在多种工作条件和故障形式下都能较准确地预测剩余寿命,有较为广泛的应用前景。 展开更多
关键词 滚动轴承 剩余寿命预测 孪生多卷积长短时记忆网络 域对抗网络
在线阅读 下载PDF
基于多源域深度域自适应的脑力负荷识别 被引量:1
10
作者 陈长德 陈兰岚 张效艇 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第5期744-753,共10页
为了解决脑力负荷识别模型在跨被试场景下泛化性能差的问题,本文构建了基于多源域深度域自适应的脑力负荷识别模型。使用预处理后的脑电和心电信号,首先通过基于最大均值差异的源域优选算法筛选出与目标域被试数据分布相近的源域被试集... 为了解决脑力负荷识别模型在跨被试场景下泛化性能差的问题,本文构建了基于多源域深度域自适应的脑力负荷识别模型。使用预处理后的脑电和心电信号,首先通过基于最大均值差异的源域优选算法筛选出与目标域被试数据分布相近的源域被试集合;然后引入动态对抗域自适应网络,以对抗训练的形式同时适配源域和目标域数据的边缘分布与条件分布;最后采用集成学习策略对不同源域训练出的模型分类结果进行投票集成,以提高脑力负荷识别的准确性和稳定性。实验结果表明,该模型在WAUC数据集的跨被试脑力负荷识别任务中具有较好的识别准确率和鲁棒性。 展开更多
关键词 脑力负荷 生理信号 多源选择 动态对抗自适应网络 集成学习
在线阅读 下载PDF
机理约束下钻井机械钻速智能预测泛化方法 被引量:1
11
作者 祝兆鹏 朱林 +5 位作者 宋先知 李永钊 张仕民 柯迪丽娅·帕力哈提 张诚恺 王超尘 《天然气工业》 EI CAS CSCD 北大核心 2024年第9期179-189,共11页
钻井机械钻速的准确预测可辅助油气井钻井前科学配置资源,对制订更加合理的钻井作业方案以及钻井提效、降本增效具有重要现实意义。智能化预测钻井机械钻速已成为行业研究热点,为解决常规智能模型在不同井间迁移能力较差的问题,在对综... 钻井机械钻速的准确预测可辅助油气井钻井前科学配置资源,对制订更加合理的钻井作业方案以及钻井提效、降本增效具有重要现实意义。智能化预测钻井机械钻速已成为行业研究热点,为解决常规智能模型在不同井间迁移能力较差的问题,在对综合录井数据进行降噪、补全等预处理的基础上,利用钻井专业知识构造约束条件,引入了域对抗神经网络(DANN),建立了机械钻速模型在不同井间的迁移机制,结合滑动窗口、增量更新与实时录井数据,形成了机械钻速模型随井下工况的实时更新方法。研究结果表明:(1)数据层约束和网络层约束均可提高智能模型的精度与稳定性,且双机理约束下的BP模型相比于普通BP模型预测精度明显提高;(2)基于域对抗神经网络的机械钻速预测模型可有效地将邻井(源域)数据知识迁移到测试井(目标域);(3)基于增量学习算法建立的双滑动窗口数据更新机制,使模型实时适应地下钻进环境变化,预测精度和泛化能力进一步提升;(4)机理约束、迁移训练与实时更新对模型泛化性能的强化作用具有叠加效应,新井机械钻速预测平均相对误差降低至20.2%。结论认为,建立的机械钻速预测模型及迁移方法相较于传统钻速预测模型,具有更好的迁移性和更高的准确度,减少了迁移过程中重复训练时间,为机械钻速智能预测提供了新的思路和方向。 展开更多
关键词 机械钻速 机理约束 对抗神经网络 迁移学习 增量更新 模型泛化
在线阅读 下载PDF
基于少数据样本的滚动轴承寿命分段预测方法
12
作者 张朋 马孝育 +3 位作者 王恒迪 李畅 邓四二 邱小彪 《机电工程》 CAS 北大核心 2024年第8期1415-1422,共8页
针对少数据样本下,滚动轴承难以准确预测剩余使用寿命(RUL)的问题,提出了一种结合卷积长短期记忆网络(ConvLSTM)与对抗性判别域自适应网络(ADDA)的轴承寿命分段预测方法。首先,利用稀疏概率自注意力机制对特征集进行了筛选,提取了具有... 针对少数据样本下,滚动轴承难以准确预测剩余使用寿命(RUL)的问题,提出了一种结合卷积长短期记忆网络(ConvLSTM)与对抗性判别域自适应网络(ADDA)的轴承寿命分段预测方法。首先,利用稀疏概率自注意力机制对特征集进行了筛选,提取了具有时变性的特征集,以获取最优全局特征,确定分段点以作为ADDA模型的输入;然后,针对不同阶段的退化特点建立了相应的健康评估指标;对处于健康状态的轴承,利用ConvLSTM网络预测了轴承健康阶段的寿命,将健康阶段预测数据作为局部特征输入ADDA网络与最优特征集(全局特征),进行了对抗训练,以实现故障阶段的寿命预测,并使用全连接层输出滚动轴承的预测剩余使用寿命;最后,采用PHM2012数据集与工程试验数据分别对模型进行了验证。研究结果表明:相较于ConvLSTM模型、RNN-HI模型、CNN-LSTM模型,ConvLSTM-ADDA寿命预测方法的平均绝对误差分别降低了78.16%、53.14%、67.13%,平均得分分别提高了66.42%、92.81%、32.37%;相较于LSTM模型、CNN-LSTM模型以及Transformer模型,ConvLSTM-ADDA寿命预测方法的均方误差分别降低了80.11%、54.95%、55.94%。因此,该算法模型能够实现对较少数据样本的轴承寿命进行RUL预测的目的,且具有较高的精度。 展开更多
关键词 对抗性判别适应网络 卷积长短期记忆网络 稀疏概率自注意力机制 少数据样本 分阶段寿命预测 剩余使用寿命
在线阅读 下载PDF
嵌入注意力机制模型的人脸表情迁移学习方法 被引量:6
13
作者 赖阳文 杨振国 +1 位作者 王勇 刘文印 《计算机应用研究》 CSCD 北大核心 2021年第2期595-599,共5页
人脸表情识别中,利用深度网络进行训练时,往往需要大量的训练数据而且实际应用中常常缺少标签数据,域适应人脸表情迁移学习是一个重要的研究课题。现有基于域适应的人脸表情识别大多采用浅层网络、深度学习网络方法,因此提出了将条件对... 人脸表情识别中,利用深度网络进行训练时,往往需要大量的训练数据而且实际应用中常常缺少标签数据,域适应人脸表情迁移学习是一个重要的研究课题。现有基于域适应的人脸表情识别大多采用浅层网络、深度学习网络方法,因此提出了将条件对抗域适应方法应用于人脸表情迁移学习,以及应用熵函数保证分类器预测的不确定人脸表情图像的可迁移性,并通过嵌入注意力机制模型来改进深度学习网络对人脸表情图像的特征提取。实验表明,通过注意力机制模型改进的条件生成对抗网络能有效地提高实验室控制和现实生活中的人脸表情数据识别的准确率。 展开更多
关键词 条件生成对抗适应网络 注意力机制模型 熵函数 人脸表情识别
在线阅读 下载PDF
面向养殖水体分布差异的COD光谱法检测研究 被引量:1
14
作者 管理 李精伟 +2 位作者 梅松 李东波 吕晓兰 《中国农机化学报》 北大核心 2021年第12期51-56,共6页
面向养殖水体,传统光谱法对化学需氧量(Chemical Oxygen Demand,COD)检测模型构建的基础:源域(现有样本库)与目标域(检测地水体)间光谱数据独立同分布。但是当源域与目标域分布间存在差异时,由源域得到的低误差模型常在目标域上表现下... 面向养殖水体,传统光谱法对化学需氧量(Chemical Oxygen Demand,COD)检测模型构建的基础:源域(现有样本库)与目标域(检测地水体)间光谱数据独立同分布。但是当源域与目标域分布间存在差异时,由源域得到的低误差模型常在目标域上表现下滑。针对该问题,提出面向UV-Vis光谱的域对抗训练网络(DAUVwpNet),将分布不同的源域和目标域数据映射至相同分布的特征空间中,使其在该空间的分布距离尽可能接近,从而在特征空间中对源域训练的目标函数也可以迁移至目标域上,以降低模型在目标域的误差。试验表明:面向同一批测试数据,DAUVwpNet的预测误差为0.78,要低于传统模型的预测误差(0.85);DAUVwpNet预测值与实测值间相关系数为0.95,要高于传统模型的相关系数(0.89)。表明了该网络能够较好对齐两域特征空间数据分布,降低因分布差异带来的COD检测误差。 展开更多
关键词 COD 在线检测 UV-VIS 水体分布差异 深度学习 对抗训练网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部