期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于RBF型人工神经网络的碳/陶瓷复合材料的化学成分对硬度的耦合影响分析 被引量:4
1
作者 刘雅芳 董万鹏 +1 位作者 由伟 饶轮 《材料导报》 EI CAS CSCD 北大核心 2015年第12期153-157,共5页
用RBF型人工神经网络研究了碳/陶瓷复合材料的化学成分对其硬度的影响。首先设计了RBF型神经网络模型,用"舍一法"进行了训练,使模型具有满意的预测性能。随后分析了化学组分对硬度的影响,包括单因素影响和双因素耦合影响。结... 用RBF型人工神经网络研究了碳/陶瓷复合材料的化学成分对其硬度的影响。首先设计了RBF型神经网络模型,用"舍一法"进行了训练,使模型具有满意的预测性能。随后分析了化学组分对硬度的影响,包括单因素影响和双因素耦合影响。结果表明:材料的两种组分同时变化时,对硬度的影响更加复杂,呈现典型的非线性特征。 展开更多
关键词 碳/陶瓷复合材料 化学成分 硬度 RBF 型人工神经网络 耦合影响
在线阅读 下载PDF
改进遗传算法结合FLANN在加速度传感器动态建模中的应用 被引量:8
2
作者 俞阿龙 《振动与冲击》 EI CSCD 北大核心 2006年第2期67-69,共3页
对遗传算法(GA)的交叉和变异操作进行改进,提出利用改进遗传算法(IGA)和函数连接型人工神经网络(FLANN)相结合实现加速度传感器的动态建模的新方法。该方法利用加速度传感器的动态标定数据,采用IGA和FLANN相结合搜索和优化动态模型参数... 对遗传算法(GA)的交叉和变异操作进行改进,提出利用改进遗传算法(IGA)和函数连接型人工神经网络(FLANN)相结合实现加速度传感器的动态建模的新方法。该方法利用加速度传感器的动态标定数据,采用IGA和FLANN相结合搜索和优化动态模型参数。文中介绍动态建模原理以及算法,给出用IGA和FLANN相结合建立的加速度传感器动态数学模型。结果表明:上面提出的动态建模方法既保留了GA的全局搜索能力和FLANN结构简单的特点,又具有网络训练速度快、实时性好、建模精度高等优点,在动态测试领域具有重要应用价值。 展开更多
关键词 加速度传感器 建模 函数连接型人工神经网络 遗传算法
在线阅读 下载PDF
Analysis and optimization of variable depth increments in sheet metal incremental forming 被引量:1
3
作者 李军超 王宾 周同贵 《Journal of Central South University》 SCIE EI CAS 2014年第7期2553-2559,共7页
A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up a... A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up and then experimentally verified.And the relation between depth increment and the minimum thickness tmin as well as its location was analyzed through the FEM model.Afterwards,the variation of depth increments was defined.The designed part was divided into three areas according to the main deformation mechanism,with Di(i=1,2) representing the two dividing locations.And three different values of depth increment,Δzi(i=1,2,3) were utilized for the three areas,respectively.Additionally,an orthogonal test was established to research the relation between the five process parameters(D and Δz) and tmin as well as its location.The result shows that Δz2 has the most significant influence on the thickness distribution for the corresponding area is the largest one.Finally,a single evaluating indicator,taking into account of both tmin and its location,was formatted with a linear weighted model.And the process parameters were optimized through a genetic algorithm integrated with an artificial neural network based on the evaluating index.The result shows that the proposed algorithm is satisfactory for the optimization of variable depth increment. 展开更多
关键词 incremental forming numerical simulation variable depth increment genetic algorithm OPTIMIZATION
在线阅读 下载PDF
Effects of aging parameters on hardness and electrical conductivity of Cu-Cr-Sn-Zn alloy by artificial neural network 被引量:1
4
作者 苏娟华 贾淑果 任凤章 《Journal of Central South University》 SCIE EI CAS 2010年第4期715-719,共5页
In order to predict and control the properties of Cu-Cr-Sn-Zn alloy,a model of aging processes via an artificial neural network(ANN) method to map the non-linear relationship between parameters of aging process and th... In order to predict and control the properties of Cu-Cr-Sn-Zn alloy,a model of aging processes via an artificial neural network(ANN) method to map the non-linear relationship between parameters of aging process and the hardness and electrical conductivity properties of the Cu-Cr-Sn-Zn alloy was set up.The results show that the ANN model is a very useful and accurate tool for the property analysis and prediction of aging Cu-Cr-Sn-Zn alloy.Aged at 470-510 ℃ for 4-1 h,the optimal combinations of hardness 110-117(HV) and electrical conductivity 40.6-37.7 S/m are available respectively. 展开更多
关键词 Cu-Cr-Sn-Zn alloy aging parameter HARDNESS electrical conductivity artificial neural network
在线阅读 下载PDF
Modeling and optimum operating conditions for FCCU using artificial neural network 被引量:6
5
作者 李全善 李大字 曹柳林 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1342-1349,共8页
A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ... A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness. 展开更多
关键词 radial basis function(RBF) neural network self-organizing gradient descent double-model fluid catalytic cracking unit(FCCU)
在线阅读 下载PDF
Error assessment of laser cutting predictions by semi-supervised learning
6
作者 Mustafa Zaidi Imran Amin +1 位作者 Ahmad Hussain Nukman Yusoff 《Journal of Central South University》 SCIE EI CAS 2014年第10期3736-3745,共10页
Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification... Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification of orthogonal array based model prediction. It shows improvement in modelling of edge quality and kerf width by applying semi-supervised learning algorithm, based on novel error assessment on simulations. The results are expected to depict better prediction on average by utilizing the systematic randomized techniques to initialize the neural network weights and increase the number of initialization. Missing values handling is difficult with statistical tools and supervised learning techniques; on the other hand, semi-supervised learning generates better results with the smallest datasets even with missing values. 展开更多
关键词 semi-supervised learning training algorithm kerf width edge quality laser cutting process artificial neural network(ANN)
在线阅读 下载PDF
A new group contribution-based method for estimation of flash point temperature of alkanes
7
作者 戴益民 刘辉 +5 位作者 陈晓青 刘又年 李浔 朱志平 张跃飞 曹忠 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期30-36,共7页
Flash point is a primary property used to determine the fire and explosion hazards of a liquid. New group contribution-based models were presented for estimation of the flash point of alkanes by the use of multiple li... Flash point is a primary property used to determine the fire and explosion hazards of a liquid. New group contribution-based models were presented for estimation of the flash point of alkanes by the use of multiple linear regression(MLR)and artificial neural network(ANN). This simple linear model shows a low average relative deviation(AARD) of 2.8% for a data set including 50(40 for training set and 10 for validation set) flash points. Furthermore, the predictive ability of the model was evaluated using LOO cross validation. The results demonstrate ANN model is clearly superior both in fitness and in prediction performance.ANN model has only the average absolute deviation of 2.9 K and the average relative deviation of 0.72%. 展开更多
关键词 flash point alkane group contribution artificial neural network(ANN) quantitative structure-property relationship(QSPR)
在线阅读 下载PDF
Developing energy forecasting model using hybrid artificial intelligence method
8
作者 Shahram Mollaiy-Berneti 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3026-3032,共7页
An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accur... An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation(BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand(gross domestic product(GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand(population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error. 展开更多
关键词 energy demand artificial neural network back-propagation algorithm imperialist competitive algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部