Based on the nonlinear displacement-strain relationship,the virtual work principle method was used to establish the nonlinear equilibrium equations of steel beams with semi-rigid connections under vertical uniform loa...Based on the nonlinear displacement-strain relationship,the virtual work principle method was used to establish the nonlinear equilibrium equations of steel beams with semi-rigid connections under vertical uniform loads and temperature change.Considering the non-uniform temperature distribution across the thickness of beams,the formulas for stresses and vertical displacements were presented.On the basis of a flowchart for analysis of the numerical example,the effect of temperature change on the elastic behavior of steel beams was investigated.It is found that the maximal stress is mainly influenced by axial temperature change,and the maximal vertical displacement is principally affected by temperature gradients.And the effect of temperature gradients on the maximal vertical displacement decreases with the increase of rotational stiffness of joints.Both the maximal stress and vertical displacement decrease with the increase of rotational stiffness of joints.It can be concluded that the effects of temperature changes and rotational stiffness of joints on the elastic behavior of steel beams are significant.However,the influence of rotational stiffness becomes smaller when the rotational stiffness is larger.展开更多
Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.Firs...Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.First,the effects of temperature on the main girder spatial position coordinates were analyzed from the transverse,longitudinal and vertical directions of bridge,and the correlation regression models were built between temperature and the position coordinates of main girder in the longitudinal and vertical directions;then the alarming indices of coordinate residuals were conducted,and the mean-value control chart was applied to making statistical pattern identification for abnormal changes of girder dynamic coordinates;and finally,the structural damage alarming method of main girder was established.Analysis results show that temperature has remarkable correlation with position coordinates in the longitudinal and vertical directions of bridge,and has weak correlation with the transverse coordinates.The 3%abnormal change of the longitudinal coordinates and 5%abnormal change of the vertical ones caused by structural damage are respectively identified by the mean-value control chart method based on GPS dynamic monitoring data and hence the structural abnormalities state identification and damage alarming for main girder of long-span suspension bridge can be realized in multiple directions.展开更多
基金Project(50478075) supported by the National Natural Science Foundation of ChinaProject(YBJJ0817) supported by Scientific Research Foundation of Graduate School of Southeast University
文摘Based on the nonlinear displacement-strain relationship,the virtual work principle method was used to establish the nonlinear equilibrium equations of steel beams with semi-rigid connections under vertical uniform loads and temperature change.Considering the non-uniform temperature distribution across the thickness of beams,the formulas for stresses and vertical displacements were presented.On the basis of a flowchart for analysis of the numerical example,the effect of temperature change on the elastic behavior of steel beams was investigated.It is found that the maximal stress is mainly influenced by axial temperature change,and the maximal vertical displacement is principally affected by temperature gradients.And the effect of temperature gradients on the maximal vertical displacement decreases with the increase of rotational stiffness of joints.Both the maximal stress and vertical displacement decrease with the increase of rotational stiffness of joints.It can be concluded that the effects of temperature changes and rotational stiffness of joints on the elastic behavior of steel beams are significant.However,the influence of rotational stiffness becomes smaller when the rotational stiffness is larger.
基金Project(51078080)supported by the National Natural Science Foundation of ChinaProject(20130969010)supported by Aeronautical Science Foundation of China+1 种基金Project(2011Y03-6)supported by Traffic Transportation Technology Project of Jiangsu Province,ChinaProject(BK2012562)supported by the Natural Science Foundation of Jiangsu Province,China
文摘Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.First,the effects of temperature on the main girder spatial position coordinates were analyzed from the transverse,longitudinal and vertical directions of bridge,and the correlation regression models were built between temperature and the position coordinates of main girder in the longitudinal and vertical directions;then the alarming indices of coordinate residuals were conducted,and the mean-value control chart was applied to making statistical pattern identification for abnormal changes of girder dynamic coordinates;and finally,the structural damage alarming method of main girder was established.Analysis results show that temperature has remarkable correlation with position coordinates in the longitudinal and vertical directions of bridge,and has weak correlation with the transverse coordinates.The 3%abnormal change of the longitudinal coordinates and 5%abnormal change of the vertical ones caused by structural damage are respectively identified by the mean-value control chart method based on GPS dynamic monitoring data and hence the structural abnormalities state identification and damage alarming for main girder of long-span suspension bridge can be realized in multiple directions.