期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
融合坐标注意力与多尺度特征的轻量级安全帽佩戴检测 被引量:7
1
作者 李忠飞 冯仕咏 +2 位作者 郭骏 张云鹤 徐飞翔 《工矿自动化》 CSCD 北大核心 2023年第11期151-159,共9页
针对现有煤矿工人安全帽佩戴检测算法存在检测精度与速度难以取得较好平衡的问题,以YOLOv4模型为基础,提出了一种融合坐标注意力与多尺度的轻量级模型M-YOLO,并将其用于安全帽佩戴检测。该模型使用融入混洗坐标注意力模块的轻量化特征... 针对现有煤矿工人安全帽佩戴检测算法存在检测精度与速度难以取得较好平衡的问题,以YOLOv4模型为基础,提出了一种融合坐标注意力与多尺度的轻量级模型M-YOLO,并将其用于安全帽佩戴检测。该模型使用融入混洗坐标注意力模块的轻量化特征提取网络S-MobileNetV2替换YOLOv4的特征提取网络CSPDarknet53,在减少相关参数量的前提下,有效改善了特征之间的联系;将原有空间金字塔池化结构中的并行连接方式改为串行连接,有效提高了计算效率;对特征融合网络进行改进,引入具有高分辨率、多细节纹理信息的浅层特征,以有效加强对检测目标特征的提取,并将原有Neck结构中的部分卷积修改为深度可分离卷积,在保证检测精度的前提下进一步降低了模型的参数量和计算量。实验结果表明,与YOLOv4模型相比,M-YOLO模型的平均精度均值仅降低了0.84%,但计算量、参数量、模型大小分别减小了74.5%,72.8%,81.6%,检测速度提高了53.4%;相较于其他模型,M-YOLO模型在准确率和实时性方面取得了良好的平衡,满足在智能视频监控终端上嵌入式加载和部署的需求。 展开更多
关键词 目标检测 安全帽佩戴检测 坐标注意力模块 轻量化 多尺度特征融合
在线阅读 下载PDF
面向鱼眼相机标定和畸变处理的深度神经网络
2
作者 李晗 葛动元 姚锡凡 《科学技术与工程》 北大核心 2025年第17期7260-7267,共8页
针对鱼眼相机的传统标定过程烦琐并且不适用于日常场景图像的问题,提出了一种新的基于卷积神经网络的方法,可同时标定鱼眼镜头的内参并进行图像畸变校正。该方法通过预测不同畸变参数下像素点的位移量,从而提高鱼眼相机标定和图像畸变... 针对鱼眼相机的传统标定过程烦琐并且不适用于日常场景图像的问题,提出了一种新的基于卷积神经网络的方法,可同时标定鱼眼镜头的内参并进行图像畸变校正。该方法通过预测不同畸变参数下像素点的位移量,从而提高鱼眼相机标定和图像畸变校正的精度;为了进一步提高模型精度和泛化性,在编码部分引入坐标注意力模块,增强对图像位置信息的关注度;最后为了增强图像的细节特征,在跨越连接部分设计了跨尺度融合模块。针对数据集稀缺的问题,还生成了一个新的大规模数据集,标有相应的畸变参数和畸变校正后的图像。实验结果表明:与其他鱼眼相机标定方法相比,重投影误差为0.312 pixel,标定的精度较高;与图像畸变处理方法相比,峰值信噪比(peak signal to noise ratio,PSNR)为38.055 dB,结构相似度(structural similarity,SSIM)为0.874,图像畸变校正的质量较好。 展开更多
关键词 鱼眼相机标定 畸变处理 坐标注意力模块 跨尺度融合模块
在线阅读 下载PDF
基于YOLOX的小麦穗旋转目标检测
3
作者 张世豪 董峦 赵昀杰 《江苏农业科学》 北大核心 2024年第20期157-164,共8页
小麦穗检测对于农业估产和育种研究具有重要意义,但由于小麦穗角度和姿态多变且存在遮挡和尺度变化等因素,给目标检测带来较大困难,提出一种针对小麦穗旋转目标检测的改进方法YOLOX-RoC,该方法在YOLOX基础上使用旋转矩形框代替水平矩形... 小麦穗检测对于农业估产和育种研究具有重要意义,但由于小麦穗角度和姿态多变且存在遮挡和尺度变化等因素,给目标检测带来较大困难,提出一种针对小麦穗旋转目标检测的改进方法YOLOX-RoC,该方法在YOLOX基础上使用旋转矩形框代替水平矩形框,更好地拟合小麦穗的轮廓和方向,减少背景干扰和重叠区域,使模型更具灵活性,更准确地捕捉小麦穗的特征;添加坐标注意力模块并采用KL散度损失函数代替交叉熵损失函数,提高对旋转目标的感知能力并解决旋转敏感度的误差度量问题,优化旋转目标的定位精度。利用基于图像合成的Copy-Paste数据增强方法,生成更多的训练样本以提高模型对不同尺度、姿态和遮挡情况的泛化能力,提高模型的鲁棒性。试验结果表明,YOLOX-RoC的AP比基准模型提升2.4百分点,针对小尺寸和被严重遮挡的小麦穗目标可以更准确地预测目标边界和角度,减少漏检和误检。本研究为小麦穗目标检测提供了一种准确和鲁棒的解决方案,为小麦估产和育种的智能化奠定了技术基础。 展开更多
关键词 目标检测 小麦穗 旋转矩形框 YOLOX 坐标注意力模块 KL额度 损失函数
在线阅读 下载PDF
改进YOLOv5模型的带钢表面缺陷检测方法
4
作者 陈万志 张春光 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2024年第3期359-365,共7页
针对带钢表面缺陷检测中的漏检和精度较低问题,提出一种融合swin-transformer和坐标注意力(coordinate attention,CA)模块的改进YOLOv5模型检测方法。在YOLOv5模型的主干网络中引入swin-transformer特征提取模块,使主干网络更聚焦于图... 针对带钢表面缺陷检测中的漏检和精度较低问题,提出一种融合swin-transformer和坐标注意力(coordinate attention,CA)模块的改进YOLOv5模型检测方法。在YOLOv5模型的主干网络中引入swin-transformer特征提取模块,使主干网络更聚焦于图像全局特征信息的提取;在特征融合网络输出分支末端嵌入CA模块,进一步增强目标缺陷方向和位置信息的敏感度。研究结果表明:改进模型在NEU-DET数据集上的平均精度值(mAP)达到了77.6%,较原YOLOv5模型提高了3个百分点。改进模型提升了带钢表面缺陷检测精度,具有更好的缺陷检测能力。 展开更多
关键词 带钢表面缺陷检测 swin-transformer模块 坐标注意力模块 YOLOv5网络
在线阅读 下载PDF
基于YOLOv5-CP的复杂环境下油茶果检测 被引量:2
5
作者 肖章 彭江 +2 位作者 刘俊杰 孙二杰 彭如恕 《中国农机化学报》 北大核心 2023年第12期193-199,共7页
为解决复杂环境下油茶果的检测精度不高的问题,提出一种YOLOv5-CP的油茶果检测方法。首先利用RealSense D435i深度相机在自然场景下采集各种环境下的油茶果图像,使用LabelImg软件进行油茶果的标注;然后引入Cutout数据增强方法和坐标注... 为解决复杂环境下油茶果的检测精度不高的问题,提出一种YOLOv5-CP的油茶果检测方法。首先利用RealSense D435i深度相机在自然场景下采集各种环境下的油茶果图像,使用LabelImg软件进行油茶果的标注;然后引入Cutout数据增强方法和坐标注意力模块(Coordinate Attention),以及提出一种改进的PANet特征提取层对YOLOv5模型进行优化,构建一种新的油茶果检测模型YOLOv5-CP;最后将YOLOv5-CP与现有模型在复杂环境下进行油茶果检测对比试验。试验表明:YOLOv5-CP模型的检测准确率、召回率以及平均精度分别为98%、94.6%以及98.4%,遮挡和重叠环境下对比原YOLOv5模型检测准确率分别提升11.3%和10.8%。本文方法有效提升油茶果检测过程中遮挡、重叠等复杂环境下果实的检测准确率,为后续开发油茶采摘机器人提供理论基础。 展开更多
关键词 油茶果 目标检测 YOLOv5算法 数据增强 坐标注意力模块
在线阅读 下载PDF
基于改进CNN的恶意软件分类方法 被引量:10
6
作者 轩勃娜 李进 《电子学报》 EI CAS CSCD 北大核心 2023年第5期1187-1197,共11页
越来越多的恶意软件变种给网络安全带来了巨大的威胁,导致了现有基于CNN(Convolutional Neural Networks)的恶意软件分类方法的泛化能力弱和准确性不足.为了解决这些问题,本文提出了一种新的方法,即基于改进CNN的恶意软件RGB(Red Green ... 越来越多的恶意软件变种给网络安全带来了巨大的威胁,导致了现有基于CNN(Convolutional Neural Networks)的恶意软件分类方法的泛化能力弱和准确性不足.为了解决这些问题,本文提出了一种新的方法,即基于改进CNN的恶意软件RGB(Red Green Blue)可视化的分类方法,可以抵御变种和混淆性恶意软件.首先,提出了一种基于RGB图像的特征表示方法,该方法更加关注恶意软件的二进制和汇编信息、API信息间的语义关系,生成具有更丰富纹理信息的图像,可以挖掘恶意代码原始与变种之间更深层的依赖关系.其次,针对恶意软件的加密和混淆问题,使用坐标注意力模块(Coordinate Attention Module,CAM)获取更大范围的空间信息来强化特征.最后,结合空洞空间金字塔池化(Atrous Spatial Pyramid Pooling,ASPP)来改进CNN模型,解决因图像尺寸归一化导致的信息丢失和冗余.实验结果表明,上述方法在最近的先进方法中脱颖而出,对Kaggle数据集和DataCon数据集的准确率分别达到99.48%和97.78%.与其它方法相比,该方法对Kaggle数据集的准确率提高了0.22%,对DataCon数据集的准确率提高了0.80%.本文方法可以有效地分类恶意软件和恶意软件家族变种,具有良好的泛化能力和抗混淆能力. 展开更多
关键词 网络安全 恶意代码分类 RGB图像 汇编信息 语义关系 坐标注意力模块 空洞空间金字塔
在线阅读 下载PDF
基于上下文信息的遥感图像目标检测 被引量:3
7
作者 梁礼明 李仁杰 +1 位作者 董信 朱晨锟 《电光与控制》 CSCD 北大核心 2023年第10期89-94,共6页
针对遥感图像中背景复杂多样、目标密集和尺度差异性大,容易造成小目标漏检和误检的问题,以YOLOv5s算法为网络基础框架,提出一种基于上下文信息的遥感图像目标检测算法。首先,设计上下文模块(CM)并添加在主干网络,增大目标区域特征的感... 针对遥感图像中背景复杂多样、目标密集和尺度差异性大,容易造成小目标漏检和误检的问题,以YOLOv5s算法为网络基础框架,提出一种基于上下文信息的遥感图像目标检测算法。首先,设计上下文模块(CM)并添加在主干网络,增大目标区域特征的感知范围,获取更多的上下文信息,提升模型对小尺度目标的检测能力;其次,在特征主干网络中引入坐标注意力(CA)模块,加强模型对浅层网络中目标位置信息的识别能力;最后,将空间金字塔池化模块替换为空洞空间卷积金字塔(ASPP)模块,实现全局信息和局部信息相融合,进一步增强小目标的语义信息。实验结果表明,在RSOD数据集上,改进后算法的mAP_(50)为97.9%,相比原YOLOv5s算法提高了1.7个百分点;FPS达到71帧/s,满足实时性检测的要求。相比其他检测算法,改进后算法具有更低的漏检率和误检率,检测性能更加优秀。 展开更多
关键词 遥感图像 上下文模块 坐标注意力模块 空洞空间卷积金字塔模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部