期刊文献+
共找到138篇文章
< 1 2 7 >
每页显示 20 50 100
基于坐标注意力机制的轻量级安全帽佩戴检测
1
作者 盖勇刚 《南京信息工程大学学报》 北大核心 2025年第3期315-327,共13页
在安全帽佩戴检测中,存在着目标密集、遮挡等问题,现有的检测方法在精度和实时性方面表现不佳.针对此问题,提出一种轻量级的检测模型CA-YOLO,旨在提升检测的准确性与实时性.首先,使用MobileNetv3网络对YOLOv8的主干网络进行改进,减少参... 在安全帽佩戴检测中,存在着目标密集、遮挡等问题,现有的检测方法在精度和实时性方面表现不佳.针对此问题,提出一种轻量级的检测模型CA-YOLO,旨在提升检测的准确性与实时性.首先,使用MobileNetv3网络对YOLOv8的主干网络进行改进,减少参数量和计算量,提升网络的检测速度.在Neck部分引入DCNv3模块来提升模型在空间特征上的提取效率.其次,在网络中加入多尺度特征提取模块和坐标注意力机制模块,通过添加全局信息,丰富特征信息,提升网络特征提取效果.最后,将CIoU损失替换为Alpha-IoU函数,通过设定权重系数,加速对目标的学习过程,进一步提高检测的精度.实验结果表明,与YOLOv8模型和现有的经典及新颖算法相比,CA-YOLO模型的平均检测精度达91.33%,比YOLOv8模型提高0.54个百分点,模型大小和参数量分别减少41%和39%,检测速度提高16.9%.相较于其他模型,CA-YOLO模型在准确率和实时性方面取得了良好的平衡,满足了对作业人员安全帽佩戴检测的需求. 展开更多
关键词 目标检测 安全帽佩戴检测 YOLOv8 坐标注意力机制 轻量化
在线阅读 下载PDF
基于特征交叉注意力机制融合的轴承故障诊断方法
2
作者 赵国超 刘崇德 +2 位作者 宋宇宁 金鑫 李伟华 《振动与冲击》 北大核心 2025年第12期228-237,共10页
为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convo... 为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convolutional neural network,CNN)和双向时间卷积网络(bidirectional temporal convolutional network,BiTCN)提取时频特征,通过交叉注意力机制(cross-attention mechanism,CA)融合时频特征的能力,充分提取原始信号故障特征,利用全连接层实现滚动轴承故障类型的精确诊断。试验研究表明:在含信噪比为9.32 dB、标准差为2.98的高斯白噪声的环境下,使用CNN-BiTCN-CA模型轴承故障分类准确率为99.88%,相较于使用CNN、BiTCN和结合自注意力机制的卷积神经网络(CNN with self-attention mechanism,CNN-SA)诊断轴承故障,准确率分别提升约22.79%、4.85%和4.19%;在引入信噪比为3.31 dB、标准差为5.96的高斯白噪声时,该模型仍然可以达到96.12%的诊断准确率。CNN-BiTCN-CA模型能够深入提取轴承信号中的故障特征,有效提高故障分类准确性。 展开更多
关键词 滚动轴承 故障诊断 双向时间卷积网络(BiTCN) 时频融合 交叉注意力机制(ca)
在线阅读 下载PDF
基于坐标注意力和软化非极大值抑制的密集安全帽检测
3
作者 尹向雷 苏妮 +1 位作者 解永芳 屈少鹏 《现代电子技术》 北大核心 2025年第2期153-161,共9页
为解决现有的安全帽检测算法对密集小目标的检测精度低的问题,提出一种基于坐标注意力和软化非极大值抑制的安全帽检测算法。引入坐标注意力机制,聚焦训练安全帽相关目标特征以提高准确率。采用软化非极大值抑制算法对候选框的置信度进... 为解决现有的安全帽检测算法对密集小目标的检测精度低的问题,提出一种基于坐标注意力和软化非极大值抑制的安全帽检测算法。引入坐标注意力机制,聚焦训练安全帽相关目标特征以提高准确率。采用软化非极大值抑制算法对候选框的置信度进行优化,提升模型对密集小目标的检测精度。通过WIoU优化边界框损失函数,使得模型聚焦于困难样例而减少简单示例对损失值的贡献,提升模型的泛化性能。实验结果表明:与基准模型YOLOv5s相比,所提算法的mAP@0.5达到88.4%,提升了3.0%;mAP@0.5:0.95达到65.6%,提升了6.8%;在召回率和准确率上分别提升了2.4%和0.5%。所提算法为密集小目标的检测提供了一定参考。 展开更多
关键词 安全帽检测 坐标注意力机制 软化非极大值抑制 YOLOv5s WIoU 边界框损失函数
在线阅读 下载PDF
选择性坐标注意力下红外图像无人机目标检测方法 被引量:1
4
作者 吴茜 魏晶鑫 陈中举 《现代电子技术》 北大核心 2025年第7期43-47,共5页
为解决无人机带来的安全隐患与隐私侵犯等问题,提出选择性坐标注意力下红外图像无人机目标检测方法。基于选择性坐标注意力机制,通过非对称卷积核在不同方向上捕捉不同尺度和形状的特征,将无人机特征的行列位置信息进行编码,动态地调整... 为解决无人机带来的安全隐患与隐私侵犯等问题,提出选择性坐标注意力下红外图像无人机目标检测方法。基于选择性坐标注意力机制,通过非对称卷积核在不同方向上捕捉不同尺度和形状的特征,将无人机特征的行列位置信息进行编码,动态地调整不同位置特征的权重,强化关键区域的特征表示。将多个红外图像输入YOLOv5网络中进行训练和处理后,在主干网络中经卷积操作后嵌入选择性坐标注意力机制,实现红外图像无人机目标特征精确提取。采用GIoU作为损失函数,优化预测框的位置和大小,实现红外图像无人机目标精准检测。实验结果表明:该方法对大小不同的无人机目标均能实现准确且快速的定位与检测,能够保持较高的检测精度。 展开更多
关键词 坐标注意力机制 特征融合 YOLOv5网络 红外图像 无人机目标 目标检测
在线阅读 下载PDF
噪声环境下基于域对抗图卷积网络和坐标注意力的说话人确认方法 被引量:1
5
作者 陈家辉 葛子瑞 +2 位作者 王天朗 郭海燕 杨震 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期57-67,共11页
为了减弱背景噪声对说话人确认(Speaker Verification,SV)性能的影响,提出一种基于域对抗图卷积网络(Domain Adversarial Graph Convolution Network,DA⁃GCN)和坐标注意力(Coordinate Attention,CA)的SV方法来提升噪声环境下的SV性能。... 为了减弱背景噪声对说话人确认(Speaker Verification,SV)性能的影响,提出一种基于域对抗图卷积网络(Domain Adversarial Graph Convolution Network,DA⁃GCN)和坐标注意力(Coordinate Attention,CA)的SV方法来提升噪声环境下的SV性能。首先,针对噪声环境下局部特征变得不稳定这个问题,提出引入CA模块,将全局时间信息和全局频率信息编码到通道注意力中,以强调有用通道,提取鲁棒性的说话人特征。其次,提出构建DA⁃GCN来辅助主网络提取与噪声相关性更小的说话人特征来进行后续的分类。具体而言,将语音信号映射为图信号,利用GCN分别对干净语音图信号特征和含噪语音图信号特征进行聚合,通过域对抗(Domain Adversarial,DA)训练,辅助主网络提取干净语音域和含噪语音域共享的说话人特征,从而降低噪声对SV性能的影响。在VoxCeleb1数据集上的实验结果表明,所提CA⁃DA⁃GCN的性能优于基线模型ExU⁃Net且表现出良好的泛化能力。 展开更多
关键词 噪声环境 说话人确认 域对抗 坐标注意力机制 图卷积神经网络
在线阅读 下载PDF
结合语言模型双编码和坐标注意力卷积的知识图谱补全
6
作者 王瑄 王晓霞 陈晓 《计算机工程与应用》 北大核心 2025年第14期206-213,共8页
知识图谱补全(KGC)旨在学习知识图谱中的现有知识实现对缺失三元组的补全。近期的相关研究表明,将语言模型(LM)应用于KGC任务能够改善模型在结构稀疏的知识图谱上的推理性能。针对现有结合LM的KGC模型性能仅依赖于LM捕获的语义特征,没... 知识图谱补全(KGC)旨在学习知识图谱中的现有知识实现对缺失三元组的补全。近期的相关研究表明,将语言模型(LM)应用于KGC任务能够改善模型在结构稀疏的知识图谱上的推理性能。针对现有结合LM的KGC模型性能仅依赖于LM捕获的语义特征,没有同时考虑知识图谱的结构信息和语义信息的问题,提出一种结合语言模型双编码和坐标注意的知识图谱补全方法LDCA。在编码时,通过引入掩码预训练的语言模型双编码结构,充分学习实体和关系的语义特征;在解码时,使用坐标注意力机制的卷积神经网络捕获实体和关系组合嵌入的跨通道信息、方向感知信息和位置感知信息。在WN18RR和FB15K-237数据集上的实验结果表明,LDCA模型在MR、MRR、Hits@1、Hits@3和Hits@10上的整体性能优于基准模型,验证了所提出模型的有效性和先进性。 展开更多
关键词 语言模型(LM) 掩码预训练 坐标注意力机制 卷积神经网络
在线阅读 下载PDF
基于坐标注意力机制增强的CenterNet模型在烟草甲检测中的应用
7
作者 孙俊峰 王保录 +1 位作者 黄琰淦 黄滔 《湖北农业科学》 2024年第11期191-196,215,共7页
通过在CenterNet模型中引入坐标注意力机制,使CAM-CenterNet模型更多地关注对烟草甲(Lasioderma serricorne)(以下简称烟虫)表征能力好的通道和位置,降低烟丝、烟末等杂质的干扰,将精确率(Precision)、召回率(Recall)、平均精度(mAP)、... 通过在CenterNet模型中引入坐标注意力机制,使CAM-CenterNet模型更多地关注对烟草甲(Lasioderma serricorne)(以下简称烟虫)表征能力好的通道和位置,降低烟丝、烟末等杂质的干扰,将精确率(Precision)、召回率(Recall)、平均精度(mAP)、每秒帧率(FPS)以及模型参数量(Params size)作为评价指标,对CAM-CenterNet模型、CenterNet模型、YOLOv3模型和Faster R-CNN模型的烟虫检测性能进行对比。结果表明,在召回率和平均精度方面,YOLOv3模型表现最好,CAM-CenterNet模型稍落后于YOLOv3模型,但高于其他模型;在帧率方面,CAM-CenterNet模型检测烟虫图像的速度较YOLOv3模型更快,且模型参数量更少,对设备配置要求更低。在检测个体较小的烟虫时,CAM-CenterNet模型的烟虫检出数量高于Faster R-CNN模型、YOLOv3模型。CAM-CenterNet模型不仅能更多地关注烟虫目标特征,而且能很好地抑制烟丝、烟末等杂质带来的干扰,实现烟虫的有效检测。CAM-CenterNet模型能满足卷烟厂对烟虫检测速度和精度的要求,可以为烟厂的烟虫整治提供技术支持。 展开更多
关键词 坐标注意力机制 CenterNet模型 caM-CenterNet模型 烟草甲(Lasioderma serricorne)检测
在线阅读 下载PDF
融合坐标与多头注意力机制的交互语音情感识别 被引量:3
8
作者 高鹏淇 黄鹤鸣 樊永红 《计算机应用》 CSCD 北大核心 2024年第8期2400-2406,共7页
语音情感识别(SER)是人机交互系统中一项重要且充满挑战性的任务。针对目前SER系统中存在特征单一和特征间交互性较弱的问题,提出多输入交互注意力网络MIAN。该网络由特定特征坐标残差注意力网络和共享特征多头注意力网络两个子网络组... 语音情感识别(SER)是人机交互系统中一项重要且充满挑战性的任务。针对目前SER系统中存在特征单一和特征间交互性较弱的问题,提出多输入交互注意力网络MIAN。该网络由特定特征坐标残差注意力网络和共享特征多头注意力网络两个子网络组成。前者利用Res2Net和坐标注意力模块学习从原始语音中获取的特定特征,并生成多尺度特征表示,增强模型对情感相关信息的表征能力;后者融合前向网络所获取的特征,组成共享特征,并经双向长短时记忆(BiLSTM)网络输入至多头注意力模块,能同时关注不同特征子空间中的相关信息,增强特征之间的交互性,以捕获判别性强的特征。通过2个子网络间的协同作用,能增加模型特征的多样性,增强特征之间的交互能力。在训练过程中,应用双损失函数共同监督,使同类样本更紧凑、不同类样本更分离。实验结果表明,MIAN在EMO-DB和IEMOCAP语料库上分别取得了91.43%和76.33%的加权平均精度,相较于其他主流模型,具有更好的分类性能。 展开更多
关键词 语音情感识别 坐标注意力机制 多头注意力机制 特定特征学习 共享特征学习
在线阅读 下载PDF
基于改进卷积注意力机制的触觉图像识别 被引量:10
9
作者 熊鹏文 陈志远 +1 位作者 廖俊杰 宋爱国 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期175-182,共8页
为了改善传统轻量化网络对触觉图像全局特征提取能力差的问题,提出一种基于轻量化网络提高触觉图像感知分类的新算法,通过将卷积块注意力模块(CBAM)引入坐标注意力机制(CA)来增强特征信息表达能力.利用CA采取空间全局信息并嵌入通道注意... 为了改善传统轻量化网络对触觉图像全局特征提取能力差的问题,提出一种基于轻量化网络提高触觉图像感知分类的新算法,通过将卷积块注意力模块(CBAM)引入坐标注意力机制(CA)来增强特征信息表达能力.利用CA采取空间全局信息并嵌入通道注意中,使卷积网络能够在较全面的区域捕获注意力权重.结果表明:所提算法优于现有轻量化网络算法;该算法对GelSight数据集、多模态传感器数据集2种触觉图像进行分类识别测试,在分类表现中分辨正确率分别达到了88.2%和94.4%;相比于传统的CBAM注意力模型、自注意力模型(SENet)和仅有LeNet的神经网络,该算法对触觉图像的识别能力在GelSight数据集上分别提高了8.7%、8.7%和3.0%,在多模态传感器数据集上分别提高了13.3%、13.4%和4.8%. 展开更多
关键词 触觉图像 轻量化 注意力机制 坐标注意力
在线阅读 下载PDF
基于注意力增强Uniformer的锂电池剩余使用寿命预测
10
作者 廖列法 刘映宝 占玉敏 《汽车技术》 北大核心 2025年第6期36-44,共9页
针对锂离子电池的剩余使用寿命(RUL)预测时常面临数据的动态变化和老化数据有限的问题,提出注意力增强Uniformer(AEUniformer)的RUL预测模型,通过Uniformer整合卷积神经网络(CNN)和自注意力机制的优势实现全面的信息感知;设计注意力引... 针对锂离子电池的剩余使用寿命(RUL)预测时常面临数据的动态变化和老化数据有限的问题,提出注意力增强Uniformer(AEUniformer)的RUL预测模型,通过Uniformer整合卷积神经网络(CNN)和自注意力机制的优势实现全面的信息感知;设计注意力引导机制(AGM)和CoordAttention实现强大的特征提取。试验结果表明,AEUniformer可以实现仅需单个老化周期的准确快速的RUL预测,数据集的平均绝对百分比误差分别为2.7%和6.16%,证明了该方法的准确性。 展开更多
关键词 锂电池 剩余使用寿命预测 数据驱动 统一变形器 注意力引导机制 坐标注意力
在线阅读 下载PDF
基于坐标注意力机制融合的反无人机系统图像识别方法 被引量:11
11
作者 薛珊 陈宇超 +1 位作者 吕琼莹 曹国华 《红外与激光工程》 EI CSCD 北大核心 2022年第9期407-417,共11页
反无人机系统是识别和打击“黑飞”无人机的有效手段,图像识别无人机是反无人机系统的关键之一。针对采集的无人机样本属于小样本、提取特征不够多,识别准确率不够高的问题,提出了一种基于迁移学习、密集卷积网络和坐标注意力机制融合... 反无人机系统是识别和打击“黑飞”无人机的有效手段,图像识别无人机是反无人机系统的关键之一。针对采集的无人机样本属于小样本、提取特征不够多,识别准确率不够高的问题,提出了一种基于迁移学习、密集卷积网络和坐标注意力机制融合的反无人机系统图像识别方法。首先,运用自制设备采集了多种无人机在不同背景下的图片,建立数据样本;其次,设计针对无人机小样本识别的基于迁移学习、坐标注意力机制和密集卷积网络融合的网络TL-CA4-DenseNet-121、基于通道注意力机制融合的网络TL-SE4-DenseNet-121等网络,运用设计的网络对小样本进行识别,并进行对比,然后分别进行了基于不同位置和不同个数的坐标注意力模块和通道注意力模块的网络识别实验;最后,将识别效果最优的网络与经典卷积神经网络模型进行对比实验。实验结果表明,提出的TL-CA4-DenseNet-121网络识别效果优于其他网络,识别的平均准确率为97.93%,F1-Score为0.982 6,网络训练时间为6 832 s。结果表明了该网络在识别小样本无人机方面的优越性和可行性。 展开更多
关键词 无人机 图像识别 坐标注意力机制 密集卷积网络
在线阅读 下载PDF
一种坐标通道注意力深度学习网络的军用飞机识别方法 被引量:2
12
作者 杨环宇 王军 +3 位作者 吴祥 薄煜明 马立丰 陆金磊 《兵工学报》 EI CAS CSCD 北大核心 2024年第7期2128-2143,共16页
战场态势瞬息万变,利用可见光图像对敌方用于军事行动的飞机类型进行有效区分,对提供军事作战信息具有重要意义。针对现有军用飞机识别方法存在小目标飞机和环境背景复杂导致的模型特征提取困难、数据样本数量不足导致的模型训练不充分... 战场态势瞬息万变,利用可见光图像对敌方用于军事行动的飞机类型进行有效区分,对提供军事作战信息具有重要意义。针对现有军用飞机识别方法存在小目标飞机和环境背景复杂导致的模型特征提取困难、数据样本数量不足导致的模型训练不充分的问题,提出一种坐标通道注意力(ConvNeXt-Coordinate Attention,ConvNeXt-CA)深度学习网络军用飞机目标识别方法。该方法在ConvNeXt网络可以保留小目标飞机特征的基础上,引入CA机制设计CA-Stage模块,提升网络对于背景和前景的区分能力;采用数据增强的方式扩充数据集,以及使用迁移学习的策略提高模型的泛化能力,训练得到具备最优超参数的ConvNeXt-CA网络。实验结果表明,与传统的军用飞机识别方法和其他深度学习模型相比,基于迁移学习的ConvNeXt-CA网络在预测准确率上有明显的提升,且具备较强的泛化能力。 展开更多
关键词 军用飞机识别 深度卷积神经网络 坐标注意力机制 迁移学习
在线阅读 下载PDF
基于特征融合注意力机制的樱桃缺陷检测识别研究 被引量:4
13
作者 代东南 马睿 +2 位作者 刘起 孙孟研 马德新 《山东农业科学》 北大核心 2024年第3期154-162,共9页
针对现有樱桃缺陷检测识别中存在的问题,为实现移动端智能化快速检测与精准识别,本研究提出了一种基于卷积神经网络对樱桃图像进行缺陷检测识别的轻量化模型,可为开发樱桃的移动端无损化智能检测系统奠定理论基础。首先,将采集到的完好... 针对现有樱桃缺陷检测识别中存在的问题,为实现移动端智能化快速检测与精准识别,本研究提出了一种基于卷积神经网络对樱桃图像进行缺陷检测识别的轻量化模型,可为开发樱桃的移动端无损化智能检测系统奠定理论基础。首先,将采集到的完好樱桃、刺激生长樱桃、双胞胎樱桃和腐烂樱桃4类樱桃图像经预处理后按比例划分训练集、验证集和测试集。其次,基于迁移学习对比分析NASNet-Mobile、MobileNetV2、ResNet18、InceptionV3、VGG-16网络模型后,选择各方面性能表现良好的MobileNetV2为基线模型,通过微调构建I-MobileNetV2模型;然后在I-MobileNetV2基础上,嵌入坐标注意力(CA)模块,构建ICA-MobileNetV2模型,该模型平均准确率达到97.09%,相比于基线模型(90.02%)提高7.85%,比I-MobileNetV2模型(94.34%)提高2.91%。可见,ICA-MobileNetV2作为可部署移动端的轻量化模型,具有较高准确率和较少参数,适用于樱桃缺陷检测与多分类任务,为樱桃缺陷检测与品质分级研究提供了新思路。 展开更多
关键词 樱桃 缺陷检测 卷积神经网络 坐标注意力机制
在线阅读 下载PDF
KMeans++与注意力机制融合的苹果叶片病害识别方法
14
作者 黄贻望 王国帅 +1 位作者 毛志 刘声 《江苏农业科学》 北大核心 2024年第20期190-198,共9页
为解决复杂环境下小尺度苹果叶片病害识别精度不高、鲁棒性不强的问题,在YOLO v5s的基础上提出一种新的改进方法。该方法首先在模型训练之前使用KMeans++聚类算法生成更接近真实框的锚框;其次在骨干网络中加入卷积块注意几模块(convolut... 为解决复杂环境下小尺度苹果叶片病害识别精度不高、鲁棒性不强的问题,在YOLO v5s的基础上提出一种新的改进方法。该方法首先在模型训练之前使用KMeans++聚类算法生成更接近真实框的锚框;其次在骨干网络中加入卷积块注意几模块(convolutional block attention module,CBAM),来提升复杂环境下小目标特征的提取能力;再次为了增强颈部网络对不同大小病害多尺度特征的有效识别,选择ConvNeXtBlock模块替换C3(CSP bottleneck with 3 convolutions)模块,并在颈部网络中融入坐标注意力模块(coordinate attention,CA),来加强模型对关键空间位置的响应,使得不同尺度的特征都能被更有效地利用;最后使用ECIoU损失函数替换原始的CIoU损失函数,来提高模型的收敛速度和精度。与Faster R-CNN、SSD、YOLO v5s、YOLO v7、YOLO v8目标检测模型相比,改进后模型的平均精度均值(mean average precision,mAP 0.5)值分别提升0.6、4.6、6.3、1.7、1.3百分点,同时在强光照、模糊、暗光的复杂场景下具有较强的鲁棒性。该模型可以为复杂环境下苹果叶片病害的识别提供行之有效的方案。 展开更多
关键词 苹果 叶片病害 病害检测 注意力机制 ConvNeXtBlock 卷积块注意力模块(CBAM) ca
在线阅读 下载PDF
基于坐标注意力机制和残差网络的水稻叶片病虫害识别 被引量:1
15
作者 廖媛珺 杨乐 +1 位作者 邵鹏 余小云 《福建农业学报》 CAS CSCD 北大核心 2023年第10期1220-1229,共10页
【目的】针对在自然条件下水稻叶片病虫害的识别效率不高、准确率较低的问题,探索基于ResNet深度学习网络的水稻叶片病虫害识别模型(ResNet50-CA)。【方法】在ResNet-50的残差卷积模块下引入坐标注意力机制(CA),采用LeakyReLU激活函数替... 【目的】针对在自然条件下水稻叶片病虫害的识别效率不高、准确率较低的问题,探索基于ResNet深度学习网络的水稻叶片病虫害识别模型(ResNet50-CA)。【方法】在ResNet-50的残差卷积模块下引入坐标注意力机制(CA),采用LeakyReLU激活函数替代ReLU激活函数,使用3个3×3的卷积核替换ResNet-50模型首层卷积层中的7×7卷积核。【结果】在使用传统卷积神经网络进行水稻叶片病虫害研究发现,ResNet-50能够较好地平衡识别准确率和模型复杂度之间的关系,因此选择在ResNet-50网络模型的基础上加以改进。使用改进后的网络通过微调参数进行水稻叶片病虫害对比性能试验,研究发现在批量样本数为16和学习率为0.0001时,ResNet50-CA获得最高的识别准确率(99.21%),优于传统的深度学习算法。【结论】改进后的网络能够提取出水稻病虫害更加细微的特征信息,从而取得更高的识别准确率,为水稻叶片病虫害识别提供新思路和方法。 展开更多
关键词 深度学习 ResNet50 水稻病虫害识别 坐标注意力机制
在线阅读 下载PDF
基于坐标注意力机制和YOLO v5s模型的山羊脸部检测方法 被引量:10
16
作者 郭阳阳 洪文浩 +1 位作者 丁屹 黄小平 《农业机械学报》 EI CAS CSCD 北大核心 2023年第7期313-321,共9页
山羊的脸部检测对羊场的智能化管理有着重要的意义。针对实际饲养环境中,羊群存在多角度、分布随机、灵活多变、羊脸检测难度大的问题,以YOLO v5s为基础目标检测网络,提出了一种结合坐标信息的山羊脸部检测模型。首先,通过移动设备获取... 山羊的脸部检测对羊场的智能化管理有着重要的意义。针对实际饲养环境中,羊群存在多角度、分布随机、灵活多变、羊脸检测难度大的问题,以YOLO v5s为基础目标检测网络,提出了一种结合坐标信息的山羊脸部检测模型。首先,通过移动设备获取舍内、舍外、单头以及多头山羊的图像并构建数据集。其次,在YOLO v5s的主干网络融入坐标注意力机制,以充分利用目标的位置信息,提高遮挡区域、小目标、多视角样本的检测精度。试验结果表明,改进YOLO v5s模型的检测精确率为95.6%,召回率为83.0%,mAP0.5为90.2%,帧速率为69 f/s,模型内存占用量为13.2 MB;与YOLO v5s模型相比,检测精度提高1.3个百分点,模型所占内存空间减少1.2 MB;且模型的整体性能远优于Faster R-CNN、YOLO v4、YOLO v5s模型。此外,本文构建了不同光照和相机抖动的数据集,来进一步验证本文方法的可行性。改进后的模型可快速有效地对复杂场景下山羊的脸部进行精准检测及定位,为动物精细化养殖时目标检测识别提供了检测思路和技术支持。 展开更多
关键词 羊脸检测 YOLO v5s 坐标注意力机制 精准畜牧
在线阅读 下载PDF
融合双分支特征和注意力机制的葡萄病虫害识别模型 被引量:18
17
作者 彭红星 徐慧明 刘华鼐 《农业工程学报》 EI CAS CSCD 北大核心 2022年第10期156-165,共10页
葡萄病虫害识别是精细化防治的前提。针对现有研究中存在的数据集少、识别精度低、模型参数量大等问题,该研究构建包含健康叶片、3类病害叶片和16类虫害的葡萄病虫害数据集,提出基于改进MobileNet V2模型的葡萄病虫害识别模型。首先在Mo... 葡萄病虫害识别是精细化防治的前提。针对现有研究中存在的数据集少、识别精度低、模型参数量大等问题,该研究构建包含健康叶片、3类病害叶片和16类虫害的葡萄病虫害数据集,提出基于改进MobileNet V2模型的葡萄病虫害识别模型。首先在MobileNet V2模型的反向残差模块中嵌入坐标注意力(Coordinate Attention,CA)机制,提升模型的信息表征能力;然后使用深度可分离卷积设计双分支特征融合模块,加强模型的特征提取能力;最后对模型的通道数进行调整,精简模型结构。试验结果表明:MobileNet_Vitis在葡萄病虫害数据集上的识别准确率和F1分数为89.16%和80.44%,相比改进前的MobileNet V2提高了1.83和9.31个百分点,而模型参数大小为7.85 MB,减少了8.5%。与ResNet101、ShuffleNetV2、MobileNetV3和GhostNet相比,MobileNet_Vitis的识别精度和F1分数更高,参数量更小。MobileNet_Vitis对单张葡萄病虫害图像的推理时间为17.53 ms,可以达到快速识别的要求。该研究提出的模型能够较好地识别葡萄病虫害,并且较大幅度地减少模型的参数量。将MobileNet_Vitis模型部署到移动端的小程序上,可为葡萄病虫害的防治提供帮助。 展开更多
关键词 病虫害 图像识别 葡萄 MobileNet V2 双分支特征融合 坐标注意力机制
在线阅读 下载PDF
基于小目标类别注意力机制与特征融合的AF-ICNet非结构化场景语义分割方法 被引量:8
18
作者 艾青林 张俊瑞 吴飞青 《光子学报》 EI CAS CSCD 北大核心 2023年第1期181-194,共14页
针对非结构化道路分割难度大、小目标检测精度较低等问题,构建基于小目标类别注意力机制与特征融合的AF-ICNet轻量级实时语义分割网络。采用空洞空间卷积池化金字塔融合不同尺度特征感受野以增强网络的全局感知能力。嵌入CA注意力机制,... 针对非结构化道路分割难度大、小目标检测精度较低等问题,构建基于小目标类别注意力机制与特征融合的AF-ICNet轻量级实时语义分割网络。采用空洞空间卷积池化金字塔融合不同尺度特征感受野以增强网络的全局感知能力。嵌入CA注意力机制,建立通道信息和空间位置信息以增强网络对非结构化道路小目标类别语义特征的提取能力。针对类别分布不均衡问题,改进权重交叉熵损失函数。利用AF-ICNet模型对Cityscapes与IDD数据集进行训练,在Cityscapes测试图像中分割的MIoU达到了71.5%,在IDD测试图像中分割的MIoU达到了62.5%。搭建实验测试系统进行实景测试,测试结果表明,AF-ICNet有效提升了非结构化道路及小目标类别的分割精度,并满足测试的实时性要求。 展开更多
关键词 小目标类别语义分割 AF-ICNet ca注意力机制 空洞空间卷积池化金字塔 损失函数
在线阅读 下载PDF
基于原始点云网格自注意力机制的三维目标检测方法 被引量:5
19
作者 鲁斌 孙洋 杨振宇 《通信学报》 EI CSCD 北大核心 2023年第10期72-84,共13页
为了增强感兴趣区域(RoI)的特征表达,包括空间网格特征编码模块和软回归损失,提出了一种基于原始点云网格自注意力机制的三维目标检测方法GT3D。网格特征编码模块用于通过自注意力机制对点的局部特征和空间特征进行有效加权,充分考虑点... 为了增强感兴趣区域(RoI)的特征表达,包括空间网格特征编码模块和软回归损失,提出了一种基于原始点云网格自注意力机制的三维目标检测方法GT3D。网格特征编码模块用于通过自注意力机制对点的局部特征和空间特征进行有效加权,充分考虑点云之间的几何关系,以提供更准确的特征表达;软回归损失用于改善数据标注过程中由于标注不准确而产生的回归歧义问题。将所提方法在公开的三维目标检测数据集KITTI上进行实验。结果表明,所提方法相比其他已公开的基于点云的三维目标检测方法检测准确率提升明显,并提交了KITTI官方测试集进行公开测试,对简单、中等和困难3个难度等级的汽车检测准确率分别达到91.45%、82.76%和79.74%。 展开更多
关键词 三维目标检测 点云 注意力机制 空间坐标编码 软回归损失
在线阅读 下载PDF
引入注意力机制的YOLOv5安全帽佩戴检测方法 被引量:85
20
作者 王玲敏 段军 辛立伟 《计算机工程与应用》 CSCD 北大核心 2022年第9期303-312,共10页
对于钢铁制造业、煤矿行业及建筑行业等高危行业来说,施工过程中佩戴安全帽是避免受伤的有效途径之一。针对目前安全帽佩戴检测模型在复杂环境下对小目标和密集目标存在误检和漏检等问题,提出一种改进YOLOv5的目标检测方法来对安全帽的... 对于钢铁制造业、煤矿行业及建筑行业等高危行业来说,施工过程中佩戴安全帽是避免受伤的有效途径之一。针对目前安全帽佩戴检测模型在复杂环境下对小目标和密集目标存在误检和漏检等问题,提出一种改进YOLOv5的目标检测方法来对安全帽的佩戴进行检测。在YOLOv5的主干网络中添加坐标注意力机制(coordinate attention),该机制将位置信息嵌入到通道注意力当中,使网络可以在更大区域上进行注意。将特征融合模块中原有特征金字塔模块替换成加权双向特征金字塔(BiFPN)网络结构,实现高效的双向跨尺度连接和加权特征融合。在自制安全帽数据集上实验结果表明,改进的YOLOv5模型平均精度达到了95.9%,相比于YOLOv5模型,平均精度提高了5.1个百分点,达到了在复杂环境下对小目标和密集目标检测的要求。 展开更多
关键词 安全帽佩戴检测 YOLOv5算法 加权双向特征金字塔 坐标注意力机制
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部