期刊文献+
共找到197篇文章
< 1 2 10 >
每页显示 20 50 100
基于坐标注意力和软化非极大值抑制的密集安全帽检测
1
作者 尹向雷 苏妮 +1 位作者 解永芳 屈少鹏 《现代电子技术》 北大核心 2025年第2期153-161,共9页
为解决现有的安全帽检测算法对密集小目标的检测精度低的问题,提出一种基于坐标注意力和软化非极大值抑制的安全帽检测算法。引入坐标注意力机制,聚焦训练安全帽相关目标特征以提高准确率。采用软化非极大值抑制算法对候选框的置信度进... 为解决现有的安全帽检测算法对密集小目标的检测精度低的问题,提出一种基于坐标注意力和软化非极大值抑制的安全帽检测算法。引入坐标注意力机制,聚焦训练安全帽相关目标特征以提高准确率。采用软化非极大值抑制算法对候选框的置信度进行优化,提升模型对密集小目标的检测精度。通过WIoU优化边界框损失函数,使得模型聚焦于困难样例而减少简单示例对损失值的贡献,提升模型的泛化性能。实验结果表明:与基准模型YOLOv5s相比,所提算法的mAP@0.5达到88.4%,提升了3.0%;mAP@0.5:0.95达到65.6%,提升了6.8%;在召回率和准确率上分别提升了2.4%和0.5%。所提算法为密集小目标的检测提供了一定参考。 展开更多
关键词 安全帽检测 坐标注意力机制 软化非极大值抑制 YOLOv5s WIoU 边界框损失函数
在线阅读 下载PDF
基于坐标注意力的多尺度轻量级苹果叶片病害识别模型 被引量:2
2
作者 谷瑞 顾家乐 +1 位作者 宋翠玲 钱春花 《中国农机化学报》 北大核心 2025年第2期173-180,186,共9页
为解决传统神经网络参数量大、无法满足资源有限的移动设备对苹果叶片病害的识别需求,提出一种基于坐标注意力的多尺度轻量级模型CA—MobileNetV2。首先,将MobileNetV2倒残差中3×3的卷积替换成多尺度特征融合模块(MMF—module),在... 为解决传统神经网络参数量大、无法满足资源有限的移动设备对苹果叶片病害的识别需求,提出一种基于坐标注意力的多尺度轻量级模型CA—MobileNetV2。首先,将MobileNetV2倒残差中3×3的卷积替换成多尺度特征融合模块(MMF—module),在不增加参数量的前提下,引入空洞卷积增大感受野,以捕捉丰富的多尺度细节信息,增强网络对细节信息和语义信息提取能力;其次,引入坐标注意力机制自适应地学习不同位置的特征权重,增强对苹果叶片病害区域的感知能力;最后,针对模型训练中的梯度消失问题,改进MobileNetV2的分类器,并引入Leaky ReLU激活函数。结果表明,所提轻量级模型在验证集上的识别准确率、参数量、浮点运算量分别为98.36%,2.35 MB和298.70 M,与ShuffleNetV2、EfficientNet—B2、MobileNetV2、MobileNetV3和GhostNet相比,参数量压缩0.69 MB、6.41 MB、0.28 MB、4.32 MB、1.46 MB,准确率提升8.6%,6.47%,5.07%,4.28%和3.85%,推理时间减少8.7 ms、21.1 ms、13 ms、6.9 ms、17.6 ms。 展开更多
关键词 苹果叶片 病害识别 坐标注意力 轻量级模型 多尺度特征融合
在线阅读 下载PDF
融合沙漏结构与改进坐标注意力的轻量级番茄叶片病害识别模型 被引量:1
3
作者 谷瑞 宋翠玲 钱春花 《浙江农业学报》 北大核心 2025年第1期217-230,共14页
针对现有番茄叶片识别模型参数量大、计算复杂度高,推理时间长,难以部署在资源受限的移动设备上的问题,本文提出一种轻量级识别网络SG-ICA-MobileNetV3。首先,引入沙漏结构对MobileNetV3Small的倒残差块进行改造,在高维空间建立特征转... 针对现有番茄叶片识别模型参数量大、计算复杂度高,推理时间长,难以部署在资源受限的移动设备上的问题,本文提出一种轻量级识别网络SG-ICA-MobileNetV3。首先,引入沙漏结构对MobileNetV3Small的倒残差块进行改造,在高维空间建立特征转换和跳跃连接缓解信息丢失问题,强化模型特征学习能力;其次,嵌入改进的坐标注意力机制,融合全局平均池化和最大池化自适应地学习不同位置的特征权重,增强对病害区域的感知能力;最后,将ReLU激活函数替换为ELU,缓解模型训练中梯度消失和权重偏置更新失效现象,提升网络收敛速度。结果表明,该模型在测试集上的分类准确率高达98.36%,在参数量、计算复杂度、推理速度、识别精度等方面优于MobileNetV3Small、MobileNeXt-1.0、MobileVit-S、ConvNeXt-V2等轻量级模型,并具有较强的泛化能力,能为快速、准确识别植物叶片病害提供算法支持。 展开更多
关键词 沙漏结构 SG-ICA-MobileNetV3 坐标注意力 番茄 叶片 病害识别
在线阅读 下载PDF
选择性坐标注意力下红外图像无人机目标检测方法 被引量:1
4
作者 吴茜 魏晶鑫 陈中举 《现代电子技术》 北大核心 2025年第7期43-47,共5页
为解决无人机带来的安全隐患与隐私侵犯等问题,提出选择性坐标注意力下红外图像无人机目标检测方法。基于选择性坐标注意力机制,通过非对称卷积核在不同方向上捕捉不同尺度和形状的特征,将无人机特征的行列位置信息进行编码,动态地调整... 为解决无人机带来的安全隐患与隐私侵犯等问题,提出选择性坐标注意力下红外图像无人机目标检测方法。基于选择性坐标注意力机制,通过非对称卷积核在不同方向上捕捉不同尺度和形状的特征,将无人机特征的行列位置信息进行编码,动态地调整不同位置特征的权重,强化关键区域的特征表示。将多个红外图像输入YOLOv5网络中进行训练和处理后,在主干网络中经卷积操作后嵌入选择性坐标注意力机制,实现红外图像无人机目标特征精确提取。采用GIoU作为损失函数,优化预测框的位置和大小,实现红外图像无人机目标精准检测。实验结果表明:该方法对大小不同的无人机目标均能实现准确且快速的定位与检测,能够保持较高的检测精度。 展开更多
关键词 坐标注意力机制 特征融合 YOLOv5网络 红外图像 无人机目标 目标检测
在线阅读 下载PDF
噪声环境下基于域对抗图卷积网络和坐标注意力的说话人确认方法 被引量:1
5
作者 陈家辉 葛子瑞 +2 位作者 王天朗 郭海燕 杨震 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期57-67,共11页
为了减弱背景噪声对说话人确认(Speaker Verification,SV)性能的影响,提出一种基于域对抗图卷积网络(Domain Adversarial Graph Convolution Network,DA⁃GCN)和坐标注意力(Coordinate Attention,CA)的SV方法来提升噪声环境下的SV性能。... 为了减弱背景噪声对说话人确认(Speaker Verification,SV)性能的影响,提出一种基于域对抗图卷积网络(Domain Adversarial Graph Convolution Network,DA⁃GCN)和坐标注意力(Coordinate Attention,CA)的SV方法来提升噪声环境下的SV性能。首先,针对噪声环境下局部特征变得不稳定这个问题,提出引入CA模块,将全局时间信息和全局频率信息编码到通道注意力中,以强调有用通道,提取鲁棒性的说话人特征。其次,提出构建DA⁃GCN来辅助主网络提取与噪声相关性更小的说话人特征来进行后续的分类。具体而言,将语音信号映射为图信号,利用GCN分别对干净语音图信号特征和含噪语音图信号特征进行聚合,通过域对抗(Domain Adversarial,DA)训练,辅助主网络提取干净语音域和含噪语音域共享的说话人特征,从而降低噪声对SV性能的影响。在VoxCeleb1数据集上的实验结果表明,所提CA⁃DA⁃GCN的性能优于基线模型ExU⁃Net且表现出良好的泛化能力。 展开更多
关键词 噪声环境 说话人确认 域对抗 坐标注意力机制 图卷积神经网络
在线阅读 下载PDF
基于DSGIoU损失与双分支坐标注意力的目标检测算法
6
作者 马素刚 李宁博 +2 位作者 侯志强 余旺盛 杨小宝 《北京航空航天大学学报》 北大核心 2025年第4期1085-1095,共11页
针对YOLOX算法中边界框回归损失效果有限和多尺度特征表示能力不足,导致检测结果不准确的问题,提出一种基于距离形状广义交并比(DSGIoU)损失与双分支坐标注意力的目标检测算法。在交并比(IoU)损失项的基础上,通过添加真实框与预测框之... 针对YOLOX算法中边界框回归损失效果有限和多尺度特征表示能力不足,导致检测结果不准确的问题,提出一种基于距离形状广义交并比(DSGIoU)损失与双分支坐标注意力的目标检测算法。在交并比(IoU)损失项的基础上,通过添加真实框与预测框之间的非重叠面积、中心点距离及宽高比3个惩罚项,优化边界框的回归收敛效果;通过平均池化和最大池化沿着2个方向对特征进行编码,获取方向感知信息和位置信息,从而对特征进行增强。为验证所提算法的检测性能,分别以网络大小为Tiny、S、M的YOLOX为基准,在PASCAL VOC和KITTI数据集上进行测试。实验结果表明:所提算法在PASCAL VOC数据集上的检测精度分别达到80.0%、82.6%、85.8%,相比基准算法YOLOX提升了1.5%、1.6%、2.0%;在KITTI数据集上的检测精度分别达到87.7%、89.7%、90.7%,相比基准算法YOLOX提升了1.7%、2.9%、1.3%。所提算法能够优化网络收敛性,提高多尺度特征的表示能力,有效提高检测精度。 展开更多
关键词 目标检测 损失函数 边界框回归 坐标注意力 YOLOX
在线阅读 下载PDF
结合语言模型双编码和坐标注意力卷积的知识图谱补全
7
作者 王瑄 王晓霞 陈晓 《计算机工程与应用》 北大核心 2025年第14期206-213,共8页
知识图谱补全(KGC)旨在学习知识图谱中的现有知识实现对缺失三元组的补全。近期的相关研究表明,将语言模型(LM)应用于KGC任务能够改善模型在结构稀疏的知识图谱上的推理性能。针对现有结合LM的KGC模型性能仅依赖于LM捕获的语义特征,没... 知识图谱补全(KGC)旨在学习知识图谱中的现有知识实现对缺失三元组的补全。近期的相关研究表明,将语言模型(LM)应用于KGC任务能够改善模型在结构稀疏的知识图谱上的推理性能。针对现有结合LM的KGC模型性能仅依赖于LM捕获的语义特征,没有同时考虑知识图谱的结构信息和语义信息的问题,提出一种结合语言模型双编码和坐标注意的知识图谱补全方法LDCA。在编码时,通过引入掩码预训练的语言模型双编码结构,充分学习实体和关系的语义特征;在解码时,使用坐标注意力机制的卷积神经网络捕获实体和关系组合嵌入的跨通道信息、方向感知信息和位置感知信息。在WN18RR和FB15K-237数据集上的实验结果表明,LDCA模型在MR、MRR、Hits@1、Hits@3和Hits@10上的整体性能优于基准模型,验证了所提出模型的有效性和先进性。 展开更多
关键词 语言模型(LM) 掩码预训练 坐标注意力机制 卷积神经网络
在线阅读 下载PDF
坐标注意力及卷积增强的全尺度融合建筑物提取网络
8
作者 何锐利 乐伟鹏 +1 位作者 俞友 黄亮 《科学技术与工程》 北大核心 2025年第18期7485-7492,共8页
建筑物作为人类生产活动的重要载体,准确快速地提取建筑物可在自然资源管理领域发挥重要作用。基于卷积神经网络(convolutional neural network, CNN)在遥感影像建筑物提取方面取得了重大进展,但构建的网络模型在特征提取和特征融合方... 建筑物作为人类生产活动的重要载体,准确快速地提取建筑物可在自然资源管理领域发挥重要作用。基于卷积神经网络(convolutional neural network, CNN)在遥感影像建筑物提取方面取得了重大进展,但构建的网络模型在特征提取和特征融合方面仍有待优化。因此,提出了一种坐标注意力及卷积增强的全尺度融合建筑物提取网络(coordinate attention and convolutional enhanced full-scale fusion building extraction network, CCFNet)。所构建的模型由坐标注意力及卷积增强的残差编码器和全尺度融合解码器组成。编码器使用坐标注意力构建通道间的依赖关系并捕获的全局信息,其使用的非对称卷积增强地物边缘特征提取,并对旋转、翻转扭曲及纵横比不均匀的地物有更强的鲁棒性。解码器使用的全尺度融合方法则有助于建筑物的重建。在中国典型城市建筑物实例数据集实验结果表明,相比于其他建筑物提取网络,本文构建的CCFNet模型在Accuracy、F_(1)、IOU和MIOU共4种分割评价指标分别取得了93.84%、84.08%、72.53%和82.59%的最优实验精度。结果表明,该模型能够有效地提取建筑物区域。 展开更多
关键词 坐标注意力 全尺度融合 建筑物提取 非对称卷积
在线阅读 下载PDF
基于坐标注意力机制的轻量级安全帽佩戴检测
9
作者 盖勇刚 《南京信息工程大学学报》 北大核心 2025年第3期315-327,共13页
在安全帽佩戴检测中,存在着目标密集、遮挡等问题,现有的检测方法在精度和实时性方面表现不佳.针对此问题,提出一种轻量级的检测模型CA-YOLO,旨在提升检测的准确性与实时性.首先,使用MobileNetv3网络对YOLOv8的主干网络进行改进,减少参... 在安全帽佩戴检测中,存在着目标密集、遮挡等问题,现有的检测方法在精度和实时性方面表现不佳.针对此问题,提出一种轻量级的检测模型CA-YOLO,旨在提升检测的准确性与实时性.首先,使用MobileNetv3网络对YOLOv8的主干网络进行改进,减少参数量和计算量,提升网络的检测速度.在Neck部分引入DCNv3模块来提升模型在空间特征上的提取效率.其次,在网络中加入多尺度特征提取模块和坐标注意力机制模块,通过添加全局信息,丰富特征信息,提升网络特征提取效果.最后,将CIoU损失替换为Alpha-IoU函数,通过设定权重系数,加速对目标的学习过程,进一步提高检测的精度.实验结果表明,与YOLOv8模型和现有的经典及新颖算法相比,CA-YOLO模型的平均检测精度达91.33%,比YOLOv8模型提高0.54个百分点,模型大小和参数量分别减少41%和39%,检测速度提高16.9%.相较于其他模型,CA-YOLO模型在准确率和实时性方面取得了良好的平衡,满足了对作业人员安全帽佩戴检测的需求. 展开更多
关键词 目标检测 安全帽佩戴检测 YOLOv8 坐标注意力机制 轻量化
在线阅读 下载PDF
结合坐标注意力与生成式对抗网络的图像超分辨率重建 被引量:2
10
作者 彭晏飞 孟欣 +1 位作者 李泳欣 刘蓝兮 《计算机工程与科学》 CSCD 北大核心 2024年第1期122-131,共10页
针对现有生成式对抗网络GAN的图像超分辨率重建模型中存在着特征信息利用不充分、VGG式判别器对局部细节的判断能力较弱以及训练不稳定的问题,提出了一种结合坐标注意力与生成式对抗网络的图像超分辨率重建模型。首先,以嵌有坐标注意力... 针对现有生成式对抗网络GAN的图像超分辨率重建模型中存在着特征信息利用不充分、VGG式判别器对局部细节的判断能力较弱以及训练不稳定的问题,提出了一种结合坐标注意力与生成式对抗网络的图像超分辨率重建模型。首先,以嵌有坐标注意力的残差块构建生成器,沿通道和空间2个维度聚合特征,更充分地提取特征。然后,调整Dropout加入网络的方式使其作用于生成器中,提高模型的泛化能力。接着,以U-Net结构构造判别器,输出详细的逐像素反馈,以获取真假图像间的局部差异。最后,在判别器中引入谱归一化正则化,稳定GAN的训练。实验结果表明,当放大因子为4时,在基准测试集Set5和Set14上取得的峰值信噪比平均提高了1.75 dB,结构相似性平均提高了0.038,能够重建出更加清晰且真实的图像,重建图像具有良好的视觉效果。 展开更多
关键词 超分辨率重建 生成式对抗网络 坐标注意力 U-Net式判别器
在线阅读 下载PDF
基于多尺度和加权坐标注意力的轻量化红外道路场景检测模型
11
作者 程小辉 黄云天 张瑞芳 《计算机应用》 CSCD 北大核心 2024年第6期1927-1934,共8页
针对道路场景下红外目标遮挡、缺乏纹理细节而导致目标误检、漏检的问题,提出一种基于多尺度和加权坐标注意力的轻量化红外道路场景检测模型(MSC-YOLO)。以YOLOv7-tiny作为基线模型,首先,在MobileNetV3的不同中间特征层引入多尺度金字... 针对道路场景下红外目标遮挡、缺乏纹理细节而导致目标误检、漏检的问题,提出一种基于多尺度和加权坐标注意力的轻量化红外道路场景检测模型(MSC-YOLO)。以YOLOv7-tiny作为基线模型,首先,在MobileNetV3的不同中间特征层引入多尺度金字塔模块PSA(Pyramid Split Attention),设计一种多尺度特征提取的轻量化主干提取网络MSM-Net(Multi-Scale Mobile Network),解决固定大小卷积核造成的特征污染问题,提高对于不同尺度目标的细粒度提取能力;其次,在特征融合网络融入加权坐标注意力(WCA)机制,叠加从中间特征图垂直和水平空间方向上获取的目标位置信息,增强目标特征在不同维度上的融合能力;最后,替换定位损失函数为高效交并比(EIoU),分别计算预测框和真实框的长、宽影响因子,提高收敛速度。在Flir数据集上进行验证实验,与YOLOv7-tiny模型相比,在mAP(IoU=0.5)仅降低0.7个百分点的前提下,MSC-YOLO的参数量减少67.3%,浮点运算次数减少54.6%,模型大小减小60.5%,帧率在RTA 2080Ti上达到101,在检测性能和轻量化上达到平衡,满足红外道路场景的实时检测需求。 展开更多
关键词 红外道路场景检测 多尺度 加权坐标注意力 轻量化 定位损失函数
在线阅读 下载PDF
基于坐标注意力机制增强的CenterNet模型在烟草甲检测中的应用
12
作者 孙俊峰 王保录 +1 位作者 黄琰淦 黄滔 《湖北农业科学》 2024年第11期191-196,215,共7页
通过在CenterNet模型中引入坐标注意力机制,使CAM-CenterNet模型更多地关注对烟草甲(Lasioderma serricorne)(以下简称烟虫)表征能力好的通道和位置,降低烟丝、烟末等杂质的干扰,将精确率(Precision)、召回率(Recall)、平均精度(mAP)、... 通过在CenterNet模型中引入坐标注意力机制,使CAM-CenterNet模型更多地关注对烟草甲(Lasioderma serricorne)(以下简称烟虫)表征能力好的通道和位置,降低烟丝、烟末等杂质的干扰,将精确率(Precision)、召回率(Recall)、平均精度(mAP)、每秒帧率(FPS)以及模型参数量(Params size)作为评价指标,对CAM-CenterNet模型、CenterNet模型、YOLOv3模型和Faster R-CNN模型的烟虫检测性能进行对比。结果表明,在召回率和平均精度方面,YOLOv3模型表现最好,CAM-CenterNet模型稍落后于YOLOv3模型,但高于其他模型;在帧率方面,CAM-CenterNet模型检测烟虫图像的速度较YOLOv3模型更快,且模型参数量更少,对设备配置要求更低。在检测个体较小的烟虫时,CAM-CenterNet模型的烟虫检出数量高于Faster R-CNN模型、YOLOv3模型。CAM-CenterNet模型不仅能更多地关注烟虫目标特征,而且能很好地抑制烟丝、烟末等杂质带来的干扰,实现烟虫的有效检测。CAM-CenterNet模型能满足卷烟厂对烟虫检测速度和精度的要求,可以为烟厂的烟虫整治提供技术支持。 展开更多
关键词 坐标注意力机制 CenterNet模型 CAM-CenterNet模型 烟草甲(Lasioderma serricorne)检测
在线阅读 下载PDF
基于坐标注意力脉冲神经网络的注视估计方法
13
作者 王红霞 赵志国 《计量学报》 CSCD 北大核心 2024年第7期982-988,共7页
针对传统相机在拍摄人眼运动时易产生动态模糊、时间分辨率低等问题,采用事件相机近眼拍摄构建Spiking-Eye数据集,并提出一种坐标注意力的脉冲神经网络模型(CA-SpikingRepVGG)。模型读取编码后的事件数据,经过带坐标注意力的主干网络进... 针对传统相机在拍摄人眼运动时易产生动态模糊、时间分辨率低等问题,采用事件相机近眼拍摄构建Spiking-Eye数据集,并提出一种坐标注意力的脉冲神经网络模型(CA-SpikingRepVGG)。模型读取编码后的事件数据,经过带坐标注意力的主干网络进行特征提取,最后馈入检测头进行检测。实验结果显示:CA-SpikingRepVGG的平均检测精确率R_(P)达到了70.8%,与SpikingVGG-16比较,该模型的R_(P)提高了15.9%,召回率R_(r)提高了14.2%;仅需SpikingDensenet模型1/3的训练时间,比其R_(P)提高1.8%、R_(r)提高0.9%。结果表明:该模型在针对眼球运动这一场景下对人眼的检测追踪能力更强,可以很好地完成注视估计任务。 展开更多
关键词 机器视觉 目标检测 脉冲神经网络 注视估计 坐标注意力 召回率 事件相机
在线阅读 下载PDF
基于坐标注意力的杂乱环境中机器人推抓协同学习
14
作者 左国玉 赵敏 +1 位作者 黄高 龚道雄 《北京工业大学学报》 CAS CSCD 北大核心 2024年第6期674-682,共9页
为提升机器人在杂乱环境中推抓协同性能、增强网络感知物体位置和物体间的位置信息的能力,提出一种基于物体位置信息的推动与抓取协同网络来解决机器人在杂乱环境中的抓取问题。该网络使用2个全卷积网络分别从视觉观察中推断出抓取和推... 为提升机器人在杂乱环境中推抓协同性能、增强网络感知物体位置和物体间的位置信息的能力,提出一种基于物体位置信息的推动与抓取协同网络来解决机器人在杂乱环境中的抓取问题。该网络使用2个全卷积网络分别从视觉观察中推断出抓取和推动操作的位置与方向。使用坐标注意力模块分别沿着二维空间的2个方向聚合特征,即在水平空间方向上捕获长距离依赖关系的同时在垂直空间方向上保持物体的位置信息。然后生成推动和抓取的位置特征的注意力图,以提升网络推断操作位置的准确性。提出物体分散度从全局角度衡量环境中物体间的分散程度,并设计基于物体分散度的推动奖励函数来提升推动动作的质量。在仿真实验中,该网络的抓取成功率和动作效率分别为75.1%和73.2%。在现实世界中,该网络的抓取成功率和动作效率分别为80.1%和76.2%。 展开更多
关键词 机器人学习 推抓协同 杂乱环境 物体位置信息 坐标注意力 物体分散度
在线阅读 下载PDF
基于坐标注意力机制融合的反无人机系统图像识别方法 被引量:11
15
作者 薛珊 陈宇超 +1 位作者 吕琼莹 曹国华 《红外与激光工程》 EI CSCD 北大核心 2022年第9期407-417,共11页
反无人机系统是识别和打击“黑飞”无人机的有效手段,图像识别无人机是反无人机系统的关键之一。针对采集的无人机样本属于小样本、提取特征不够多,识别准确率不够高的问题,提出了一种基于迁移学习、密集卷积网络和坐标注意力机制融合... 反无人机系统是识别和打击“黑飞”无人机的有效手段,图像识别无人机是反无人机系统的关键之一。针对采集的无人机样本属于小样本、提取特征不够多,识别准确率不够高的问题,提出了一种基于迁移学习、密集卷积网络和坐标注意力机制融合的反无人机系统图像识别方法。首先,运用自制设备采集了多种无人机在不同背景下的图片,建立数据样本;其次,设计针对无人机小样本识别的基于迁移学习、坐标注意力机制和密集卷积网络融合的网络TL-CA4-DenseNet-121、基于通道注意力机制融合的网络TL-SE4-DenseNet-121等网络,运用设计的网络对小样本进行识别,并进行对比,然后分别进行了基于不同位置和不同个数的坐标注意力模块和通道注意力模块的网络识别实验;最后,将识别效果最优的网络与经典卷积神经网络模型进行对比实验。实验结果表明,提出的TL-CA4-DenseNet-121网络识别效果优于其他网络,识别的平均准确率为97.93%,F1-Score为0.982 6,网络训练时间为6 832 s。结果表明了该网络在识别小样本无人机方面的优越性和可行性。 展开更多
关键词 无人机 图像识别 坐标注意力机制 密集卷积网络
在线阅读 下载PDF
基于选择性坐标注意力的SAR图像舰船目标检测 被引量:8
16
作者 严春满 王铖 《电子学报》 EI CAS CSCD 北大核心 2023年第9期2481-2491,共11页
针对SAR(Synthetic Aperture Radar)图像舰船目标检测结果虚警率和漏检率较高的问题,本文提出一种基于选择性坐标注意力机制的舰船目标检测算法.该算法以新的选择性坐标注意力机制为基础,首先通过不同卷积核的特征提取分支对舰船目标进... 针对SAR(Synthetic Aperture Radar)图像舰船目标检测结果虚警率和漏检率较高的问题,本文提出一种基于选择性坐标注意力机制的舰船目标检测算法.该算法以新的选择性坐标注意力机制为基础,首先通过不同卷积核的特征提取分支对舰船目标进行特征提取;然后融合所有分支的特征,并沿融合后特征的不同空间方向进行编码形成两个一维特征向量,以捕获空间方向上特征的位置信息;最后利用这一对方向和位置敏感的特征向量编码形成“门”机制,对各分支不同大小感受野提取的特征选择性地加权融合,以增强舰船目标的特征表示.本文以SSD(Single Shot MultiBox Detector)作为基础检测算法首先在SSDD(SAR Ship Detection Dataset)数据集上进行实验,实验结果表明,选择性坐标注意力机制相较于其他注意力机制能有效提升网络模型对舰船目标的检测能力,同时,基于选择性坐标注意力机制改进的SSD舰船目标检测算法平均检测精度达到了94.20%,较原SSD算法提升了4.45%.此外,通过在其他两个舰船数据集上的进一步测试,反映改进算法具有较好的泛化性,其综合性能优于其他对比目标检测算法. 展开更多
关键词 合成孔径雷达 舰船目标检测 卷积神经网络 选择性坐标注意力 特征提取
在线阅读 下载PDF
基于改进坐标注意力和U-Net神经网络的淡水养殖区提取 被引量:6
17
作者 张欣 戴佩玉 +2 位作者 李卫国 任妮 毛星 《农业工程学报》 EI CAS CSCD 北大核心 2023年第17期153-162,共10页
针对淡水养殖区空间分布零碎以及样本数量不均衡等因素造成淡水养殖区提取不准确的问题,该研究提出了一种基于U-Net(U-shaped Network)的改进模型,制作了Landsat淡水养殖区动态监测的数据集,增加高、低维特征融合的坐标注意力机制提高... 针对淡水养殖区空间分布零碎以及样本数量不均衡等因素造成淡水养殖区提取不准确的问题,该研究提出了一种基于U-Net(U-shaped Network)的改进模型,制作了Landsat淡水养殖区动态监测的数据集,增加高、低维特征融合的坐标注意力机制提高模型的提取精度,构建多尺度特征学习更多位置信息,引入focal tversky loss损失函数提升零碎养殖区的识别率,实现1985—2021年研究区淡水养殖区的精确提取,分析近36年研究区淡水养殖区时空变化情况。结果表明:1)2021年淡水养殖区提取效果良好,改进后的模型总体分类精度为0.947,准确率为0.926、召回率0.966、F1分数0.946,均交并比0.899、Kappa系数为0.894,与其他模型相比,总体分类精度、Kappa系数大幅提升。2)1985—2021年,研究区淡水养殖区大致经历起步扩张、急速扩张、轻微萎缩3个阶段:1985—2000年研究区淡水养殖面积持续增加,总面积由1985年0.48km^(2)增长至2000年36.92km^(2),年度增加量大于1km^(2)且小于5km^(2);2000—2017年淡水养殖区面积急速增加至234.47km^(2),年度增加量大于5km^(2);2021养殖区面积209.58km^(2),2017—2021年养殖区面积减少了24.89 km^(2),转出的淡水养殖区多为建设用地所取代。综上,改进的模型具有较高的识别精度,该研究可以为淡水养殖区的提取提供参考,为水产养殖业的科学化管理提供信息依据。 展开更多
关键词 遥感 监测 卷积神经网络 LANDSAT 养殖面积 坐标注意力
在线阅读 下载PDF
融合坐标注意力和自适应特征的YOLOv5陶瓷膜缺陷检测方法 被引量:5
18
作者 雷震霆 朱兴龙 +3 位作者 孙进 马昊天 梁立 游志刚 《电子测量技术》 北大核心 2023年第7期133-137,共5页
针对平板陶瓷膜表面缺陷实时检测时存在检测准确率较低的问题,本文提出了一种融合坐标注意力和自适应特征的YOLOv5陶瓷膜缺陷检测方法。通过在原有YOLOv5模型的主干网络中加入坐标注意力机制,建立位置信息和通道之间的关系,从而更准确... 针对平板陶瓷膜表面缺陷实时检测时存在检测准确率较低的问题,本文提出了一种融合坐标注意力和自适应特征的YOLOv5陶瓷膜缺陷检测方法。通过在原有YOLOv5模型的主干网络中加入坐标注意力机制,建立位置信息和通道之间的关系,从而更准确地获取感兴趣区域。在原始网络的预测网络中融入自适应特征融合机制,提高模型对多尺度缺陷的检测能力。将空洞空间卷积池化金字塔模块替换原始网络中的空间金字塔池化模块,提高卷积核视野获取更多的有用信息。实验结果表明:本文模型平均精度为97.8%,检测帧数为32 FPS,平均精度与原始YOLOv5模型相比提高了5.5%。本文提出的模型在满足平板陶瓷膜缺陷的实时检测条件下,提高了模型的检测准确率,对推动平板陶瓷膜缺陷检测的发展具有一定的参考价值。 展开更多
关键词 YOLOv5s 平板陶瓷膜 目标检测 坐标注意力 自适应特征融合
在线阅读 下载PDF
基于坐标注意力机制和残差网络的水稻叶片病虫害识别 被引量:1
19
作者 廖媛珺 杨乐 +1 位作者 邵鹏 余小云 《福建农业学报》 CAS CSCD 北大核心 2023年第10期1220-1229,共10页
【目的】针对在自然条件下水稻叶片病虫害的识别效率不高、准确率较低的问题,探索基于ResNet深度学习网络的水稻叶片病虫害识别模型(ResNet50-CA)。【方法】在ResNet-50的残差卷积模块下引入坐标注意力机制(CA),采用LeakyReLU激活函数替... 【目的】针对在自然条件下水稻叶片病虫害的识别效率不高、准确率较低的问题,探索基于ResNet深度学习网络的水稻叶片病虫害识别模型(ResNet50-CA)。【方法】在ResNet-50的残差卷积模块下引入坐标注意力机制(CA),采用LeakyReLU激活函数替代ReLU激活函数,使用3个3×3的卷积核替换ResNet-50模型首层卷积层中的7×7卷积核。【结果】在使用传统卷积神经网络进行水稻叶片病虫害研究发现,ResNet-50能够较好地平衡识别准确率和模型复杂度之间的关系,因此选择在ResNet-50网络模型的基础上加以改进。使用改进后的网络通过微调参数进行水稻叶片病虫害对比性能试验,研究发现在批量样本数为16和学习率为0.0001时,ResNet50-CA获得最高的识别准确率(99.21%),优于传统的深度学习算法。【结论】改进后的网络能够提取出水稻病虫害更加细微的特征信息,从而取得更高的识别准确率,为水稻叶片病虫害识别提供新思路和方法。 展开更多
关键词 深度学习 ResNet50 水稻病虫害识别 坐标注意力机制
在线阅读 下载PDF
三维坐标注意力路径聚合网络的目标检测算法 被引量:3
20
作者 涂小妹 包晓安 +2 位作者 吴彪 金瑜婷 张庆琪 《计算机科学与探索》 CSCD 北大核心 2023年第12期2984-2998,共15页
针对YOLO系列算法在实际工业应用中存在对目标预测框定位不够准确,难以适用于对定位要求较高的现实场景的问题,提出了三维坐标注意力路径聚合网络的目标检测算法YOLO-T。首先,采用短连接方式对路径聚合特征金字塔的跨层特征进行融合,保... 针对YOLO系列算法在实际工业应用中存在对目标预测框定位不够准确,难以适用于对定位要求较高的现实场景的问题,提出了三维坐标注意力路径聚合网络的目标检测算法YOLO-T。首先,采用短连接方式对路径聚合特征金字塔的跨层特征进行融合,保留其浅层语义信息;其次,基于坐标注意力机制提出了三维坐标注意力(TDCA)模型,利用该模型对路径聚合特征金字塔内的特征进行注意力加权(TPA-FPN),保留有用信息和去除冗余信息;然后,改进了标签分配策略中简单最优传输分配(SimOTA)的损失矩阵计算方法,在保证不损失效率的同时增强了性能;最后,利用Depthwise Separable Conv改进了主干特征提取网络中的卷积模块使模型轻量化。实验结果表明:该算法在PASCAL VOC2007+2012数据集上,检测准确率mAP@0.50比YOLOX-S提高了1.3个百分点,mAP@0.50:0.95提高了3.8个百分点;在COCO2017数据集上平均检测精度mAP@0.50:0.95提高了2.4个百分点。 展开更多
关键词 目标检测 三维坐标注意力(TDCA) 注意力路径聚合特征金字塔(TPA-FPN) YOLOX-S算法 改进SimOTA策略
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部