期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于高斯和均方根容积卡尔曼滤波的姿态角辅助目标跟踪算法 被引量:6
1
作者 单甘霖 张凯 吉兵 《电子与信息学报》 EI CSCD 北大核心 2014年第7期1579-1584,共6页
根据目标2维运动速度与姿态角的关系,该文提出一种姿态角辅助目标跟踪算法。在目标运动学基础上建立状态向量中包含姿态角的跟踪模型,实现姿态角对目标跟踪的辅助;针对基于模板匹配姿态角量测的噪声为非高斯情况,将均方根容积卡尔曼滤... 根据目标2维运动速度与姿态角的关系,该文提出一种姿态角辅助目标跟踪算法。在目标运动学基础上建立状态向量中包含姿态角的跟踪模型,实现姿态角对目标跟踪的辅助;针对基于模板匹配姿态角量测的噪声为非高斯情况,将均方根容积卡尔曼滤波引入到高斯和滤波框架下,提出新的高斯和均方根容积卡尔曼滤波算法,提高非线性非高斯处理能力,同时结合目标运动中姿态角的变化规律,建立姿态角分量不同的跟踪模型,通过模型切换实现机动姿态角的滤波。算法对姿态角量测进行滤波,同时实现了姿态角信息与位置信息的有效融合。仿真结果验证了该算法的有效性和正确性。 展开更多
关键词 目标跟踪 信息融合 非线性非高斯滤波 均方根容积卡尔曼滤波 模型切换
在线阅读 下载PDF
基于均方根容积卡尔曼的δ-GLMB多目标跟踪算法 被引量:3
2
作者 母晓慧 杨风暴 +2 位作者 刘哲 陶晓伟 张雅玲 《计算机应用与软件》 北大核心 2020年第4期164-170,共7页
在非线性高杂波密度场景下,高斯混合(Gaussian Mixture,GM)实现的δ-广义标签多伯努利滤波器(δ-Generalized Labeled Multi-Bernoulli Filter,δ-GLMB)难以准确地估计目标数目及运动状态。针对这一问题,提出基于均方根容积卡尔曼滤波(S... 在非线性高杂波密度场景下,高斯混合(Gaussian Mixture,GM)实现的δ-广义标签多伯努利滤波器(δ-Generalized Labeled Multi-Bernoulli Filter,δ-GLMB)难以准确地估计目标数目及运动状态。针对这一问题,提出基于均方根容积卡尔曼滤波(Square-rooted Cubature Kalman Filter,SCKF)的δ-GLMB高斯混合实现算法。基于三阶球面-径向容积准则选取一组等权的容积点集,对GM-δ-GLMB滤波器的伯努利分量传递过程中的高斯参量进行预测及更新,实现非线性模型系统下的目标跟踪。仿真结果表明,与现有的δ-GLMB滤波器的扩展卡尔曼滤波(Extended Kalman Filter,EKF)高斯混合实现及无迹卡尔曼滤波(Unscented Kalman Filter,UKF)高斯混合实现相比,该算法可提高非线性高杂波密度环境下的目标跟踪精度。 展开更多
关键词 非线性系统 均方根容积卡尔曼 δ-广义标签多伯努利 高斯混合 多目标跟踪
在线阅读 下载PDF
基于均方根容积粒子的SMC-PHD算法 被引量:1
3
作者 刘哲 王祖林 +2 位作者 徐迈 刘景贤 杨蓝 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第10期1950-1958,共9页
传统的序贯蒙特卡罗概率假设密度(SMC-PHD)算法采用状态转移密度作为重要性采样函数.当目标非线性运动时,少数粒子将具有较大的权值,导致估计精度低、结果发散.针对上述问题,提出了一种基于均方根容积卡尔曼滤波(SCKF)和统计门限技术的... 传统的序贯蒙特卡罗概率假设密度(SMC-PHD)算法采用状态转移密度作为重要性采样函数.当目标非线性运动时,少数粒子将具有较大的权值,导致估计精度低、结果发散.针对上述问题,提出了一种基于均方根容积卡尔曼滤波(SCKF)和统计门限技术的重要性采样函数设计方法.在重要性采样函数估计时,首先利用SCKF对重要性采样函数的均值和协方差阵进行预测,而后利用统计门限技术提取与重要性采样粒子相关联的量测.通过相应的权值对所提取的量测进行合并,更新重要性采样函数的均值和协方差阵.在此基础上将设计的重要性采样函数应用于SMC-PHD的强度预测和更新,最终实现多目标状态和数目的估计.实验表明,本算法在非线性多目标跟踪中具有精度高、估计结果稳定的优点. 展开更多
关键词 序贯蒙特卡罗 概率假设密度 重要性采样 均方根容积卡尔曼滤波 统计门限
在线阅读 下载PDF
一种改进的均方根容积粒子滤波算法 被引量:2
4
作者 胡颖 《火力与指挥控制》 CSCD 北大核心 2016年第1期104-108,共5页
传统的粒子滤波算法在重要性采样估计时忽略了当前量测影响。在非线性场景下,传统的粒子滤波导致个别粒子具有大权值,造成估计结果精度差。针对该问题,结合均方根容积卡尔曼滤波(SCKF)算法和Gating技术,提出了一种新的重要性函数估计算... 传统的粒子滤波算法在重要性采样估计时忽略了当前量测影响。在非线性场景下,传统的粒子滤波导致个别粒子具有大权值,造成估计结果精度差。针对该问题,结合均方根容积卡尔曼滤波(SCKF)算法和Gating技术,提出了一种新的重要性函数估计算法。本算法将后验概率作为重要性采样函数,通过利用SCKF和统计距离,建立粒子与量测的关联关系,实现对重要性采样函数的均值和协方差矩阵的估计。而后,使用粒子滤波算法,对多目标状态和数目进行估计。实验表明,在非线性跟踪场景下,本算法估计精度高,估计结果稳定。 展开更多
关键词 粒子滤波 均方根容积卡尔曼滤波 重要性采样 统计距离
在线阅读 下载PDF
面向非线性MTT的多模型泊松多伯努利混合滤波算法
5
作者 陈嵩杰 李波 张露 《小型微型计算机系统》 CSCD 北大核心 2024年第3期629-635,共7页
在多目标跟踪(Multi-target Tracking,MTT)的非线性特性与低检测概率情况下,针对多伯努利滤波算法的高斯混合(Gaussian Mixture,GM)实现难以精确估计目标的势与运动状态的实际问题,本文提出了一种适用于非线性系统的泊松多伯努利混合滤... 在多目标跟踪(Multi-target Tracking,MTT)的非线性特性与低检测概率情况下,针对多伯努利滤波算法的高斯混合(Gaussian Mixture,GM)实现难以精确估计目标的势与运动状态的实际问题,本文提出了一种适用于非线性系统的泊松多伯努利混合滤波(Poisson Multi-Bernoulli Mixture Filter,PMBM)算法.首先,推导出多模型泊松多伯努利混合滤波的高斯混合(GM Multi-model PMBM,GM-MM-PMBM)实现过程.然后,分别对GM-MM-PMBM的伯努利高斯分量进行预测与更新,实现了基于非线性系统的MTT.为提升系统稳定性,基于平方根协方差矩阵推导出GM-MM-PMBM均方根容积卡尔曼滤波算法的实现过程.最后,仿真实验综合验证了本文算法的跟踪性能. 展开更多
关键词 多目标跟踪 多伯努利混合滤波 均方根容积卡尔曼滤波 高斯混合
在线阅读 下载PDF
基于高斯和与SCKF的非线性非高斯滤波算法 被引量:13
6
作者 张凯 单甘霖 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第11期2524-2530,共7页
针对均方根容积卡尔曼滤波(SCKF)对非高斯情况滤波效果差的问题,在分析SCKF和高斯和滤波基础上,提出一种高斯和均方根容积卡尔曼滤波新算法。算法采用高斯和形式来逼近非高斯后验概率密度,将SCKF作为子滤波器,对每个高斯分量进行时间和... 针对均方根容积卡尔曼滤波(SCKF)对非高斯情况滤波效果差的问题,在分析SCKF和高斯和滤波基础上,提出一种高斯和均方根容积卡尔曼滤波新算法。算法采用高斯和形式来逼近非高斯后验概率密度,将SCKF作为子滤波器,对每个高斯分量进行时间和量测更新,使其有效解决非线性非高斯滤波问题。仿真结果表明,高斯和均方根容积卡尔曼滤波估计精度高于粒子滤波和高斯和扩展卡尔曼滤波算法,与容积粒子滤波精度相当,但耗时约为容积粒子滤波的15%,是一种较好平衡跟踪精度和实时性的非线性非高斯滤波算法。 展开更多
关键词 非线性非高斯 高斯和滤波 均方根容积卡尔曼滤波 贝叶斯统计
在线阅读 下载PDF
一种改进的多伯努利多目标跟踪算法 被引量:5
7
作者 王海环 王俊 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第6期176-182,共7页
针对粒子势均衡多目标多伯努利滤波的粒子实现形式所需粒子数多、粒子退化严重的问题,将均方根容积卡尔曼滤波与粒子势均衡多目标多伯努利滤波相结合,提出均方根容积卡尔曼粒子势均衡多目标多伯努利滤波算法.该算法利用均方根容积卡尔... 针对粒子势均衡多目标多伯努利滤波的粒子实现形式所需粒子数多、粒子退化严重的问题,将均方根容积卡尔曼滤波与粒子势均衡多目标多伯努利滤波相结合,提出均方根容积卡尔曼粒子势均衡多目标多伯努利滤波算法.该算法利用均方根容积卡尔曼滤波构建重要性密度函数,再对其进行采样获得预测粒子状态,从而提高粒子的准确性,减轻粒子退化.与基于无迹卡尔曼的粒子势均衡多目标多伯努利滤波相比,该算法更稳定,且算法性能不受目标状态维数的限制.仿真实验表明,所提算法与粒子势均衡多目标多伯努利滤波算法和基于无迹卡尔曼的粒子势均衡多目标多伯努利滤波算法相比,其跟踪精度更高. 展开更多
关键词 多目标跟踪 衡多伯努利滤波 粒子滤波 重要性密度函数 均方根容积卡尔曼滤波
在线阅读 下载PDF
基于改进概率假设密度的多目标跟踪算法 被引量:2
8
作者 王海环 王俊 《电波科学学报》 EI CSCD 北大核心 2016年第1期53-60,共8页
经典序贯蒙特卡罗概率假设密度(Sequential Mote Carlo Probability Hypothesis Density,SMC-PHD)滤波中,将目标状态转移密度函数做为建议密度函数,没有利用当前观测信息,导致大部分预测粒子状态偏离目标真实状态,粒子退化严重.针对上... 经典序贯蒙特卡罗概率假设密度(Sequential Mote Carlo Probability Hypothesis Density,SMC-PHD)滤波中,将目标状态转移密度函数做为建议密度函数,没有利用当前观测信息,导致大部分预测粒子状态偏离目标真实状态,粒子退化严重.针对上述问题,提出利用均方根容积卡尔曼滤波产生建议密度函数,对其进行采样得到预测粒子状态,该方法有严格理论基础,能有效减轻SMC-PHD滤波中的粒子退化,且适用性很强.仿真实验对比了该算法、经典SMC-PHD和基于无迹卡尔曼的SMC-PHD算法的跟踪性能,验证了该方法无论对势估计还是对目标状态估计的精度都优于其他两种算法. 展开更多
关键词 多目标跟踪 概率假设密度滤波 序贯蒙特卡罗 建议密度函数 均方根容积卡尔曼滤波
在线阅读 下载PDF
带多普勒量测的序贯SCKF雷达目标跟踪算法 被引量:1
9
作者 张安清 张喜涛 牛治永 《电讯技术》 北大核心 2014年第12期1646-1650,共5页
为提高非线性观测条件下雷达目标的跟踪性能,将序贯处理方法引入均方根容积卡尔曼滤波(SCKF),提出一种带多普勒量测的序贯均方根容积卡尔曼滤波(SSCKF-D)雷达目标跟踪算法,该算法通过建立伪量测去除径向距离和径向速度量测误差方差之间... 为提高非线性观测条件下雷达目标的跟踪性能,将序贯处理方法引入均方根容积卡尔曼滤波(SCKF),提出一种带多普勒量测的序贯均方根容积卡尔曼滤波(SSCKF-D)雷达目标跟踪算法,该算法通过建立伪量测去除径向距离和径向速度量测误差方差之间的相关性。基于SCKF算法,按照量测精确度的高低顺序对方位角、俯仰角、径向距离和伪量测序贯处理。Monte Carlo仿真表明,与SCKF和带多普勒量测的均方根容积卡尔曼滤波(SCKF-D)算法相比,SSCKF-D算法跟踪精度更高,较后者提高20%以上,收敛速度更快,更适用于空间目标跟踪。 展开更多
关键词 雷达目标跟踪 序贯滤波 均方根容积卡尔曼滤波 多普勒量测
在线阅读 下载PDF
基于SCKF的GM-δ-GLMB多目标跟踪算法 被引量:1
10
作者 胡颖 《火力与指挥控制》 CSCD 北大核心 2023年第6期49-54,共6页
多目标跟踪场景中,目标状态和量测均为随机分布。以高斯混合δ广义标签多目标多伯努利分布(gaussian mixtureδ-generalized labeled multi-bernoulli filter,GM-δ-GLMB)为代表的多目标跟踪方法,将状态和量测使用多目标多伯努利分量表... 多目标跟踪场景中,目标状态和量测均为随机分布。以高斯混合δ广义标签多目标多伯努利分布(gaussian mixtureδ-generalized labeled multi-bernoulli filter,GM-δ-GLMB)为代表的多目标跟踪方法,将状态和量测使用多目标多伯努利分量表示,通过多伯努利分量递推,实现对目标的跟踪与估计。GM-δ-GLMB在非线性多目标跟踪场景下会出现跟踪性能下降的问题。针对这一问题,将均方根容积卡尔曼与GM-δ-GLMB相结合,提高了GM-δ-GLMB算法在非线性场景的跟踪精度。同时,为减少运算复杂度和杂波对估计结果的影响,采用统计门限和最大似然概率策略,获取候选量测,用于多目标分量的更新。仿真结果表明,所提出的方法在非线性跟踪场景下具有良好的估计精度。 展开更多
关键词 多目标跟踪 多目标多伯努利 高斯混合 均方根容积卡尔曼 统计门限
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部