为快速平稳的启动基于模块化多电平换流器的多端柔性直流输电系统(modular multilevel converter-multi-terminal direct current,MMC-MTDC),避免各站启动时序配合不当引起大的电气冲击甚至启动失败,提出了MMC-MTDC系统协调启动控制策...为快速平稳的启动基于模块化多电平换流器的多端柔性直流输电系统(modular multilevel converter-multi-terminal direct current,MMC-MTDC),避免各站启动时序配合不当引起大的电气冲击甚至启动失败,提出了MMC-MTDC系统协调启动控制策略。首先,指出MMC存在交流侧、直流侧和交直流侧混合3种预充电方式,基于其充电机理,设计了预充电方式识别方法,提出了可将子模块充电至额定电压的闭环均压充电策略;其次,研究了多端系统启动时序的有效配合方案,提出了基于直流电压斜坡控制方式的并联式MMC-MTDC系统协调启动控制策略;最后,通过Matlab/Simulink构建三端系统进行仿真。结果表明:闭环均压充电方法能自动适应MMC 3种预充电方式,使子模块平稳充电至额定值;协调启动策略则能很好的实现多端系统平稳解锁。展开更多
In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery o...In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery open circuit voltage (OCV) as a function of state of charge (SOC) was depicted by the Nernst equation.An equivalent circuit network was adopted to describe the polarization effect of the lithium-ion battery.A linear identifiable formulation of the battery model was derived by discretizing the frequent-domain description of the battery model.The recursive least square algorithm with forgetting was applied to implement the on-line parameter calibration.The validation results show that the on-line calibrated model can accurately predict the dynamic voltage behavior of the lithium-ion battery.The maximum and mean relative errors are 1.666% and 0.01%,respectively,in a hybrid pulse test,while 1.933% and 0.062%,respectively,in a transient power test.The on-line parameter calibration method thereby can ensure that the model possesses an acceptable robustness to varied battery loading profiles.展开更多
文摘提出一种模块化多电平变流器(modular multilevel converter,MMC)的自适应均压方法。在每个控制周期中,根据桥臂电流绝对值的大小选择不同个数的功率模块进行轮换。此外,还推导并计算了采用该自适应均压方法的功率器件平均开关频率的解析表达式。通过160 k V/400 MVA的MMC仿真系统验证了所提出的自适应均压算法的有效性和平均开关频率计算的正确性。最后,在RT-LAB实时仿真实验平台中搭建了350 k V/1000 MW的MMC背靠背系统,对上述方法进行了实验验证。实验结果表明,采用所提出的自适应均压方法能够在保证功率模块电容电压均衡的前提下降低开关频率,提高系统效率。
基金Project(50905015) supported by the National Natural Science Foundation of China
文摘In order to characterize the voltage behavior of a lithium-ion battery for on-board electric vehicle battery management and control applications,a battery model with a moderate complexity was established.The battery open circuit voltage (OCV) as a function of state of charge (SOC) was depicted by the Nernst equation.An equivalent circuit network was adopted to describe the polarization effect of the lithium-ion battery.A linear identifiable formulation of the battery model was derived by discretizing the frequent-domain description of the battery model.The recursive least square algorithm with forgetting was applied to implement the on-line parameter calibration.The validation results show that the on-line calibrated model can accurately predict the dynamic voltage behavior of the lithium-ion battery.The maximum and mean relative errors are 1.666% and 0.01%,respectively,in a hybrid pulse test,while 1.933% and 0.062%,respectively,in a transient power test.The on-line parameter calibration method thereby can ensure that the model possesses an acceptable robustness to varied battery loading profiles.