期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于均匀离散曲波变换的多聚焦图像融合 被引量:11
1
作者 杨扬 戴明 周箩鱼 《红外与激光工程》 EI CSCD 北大核心 2013年第9期2547-2552,共6页
利用均匀离散曲波变换(UDCT)多尺度、多方向、低冗余等特征,提出了一种新的多聚焦图像融合方法。首先使用UDCT对源图像进行多频带分解;然后根据多聚焦图像的特点,对分解后的低频子带系数运用一种基于改进拉普拉斯和算子的方案进行融合,... 利用均匀离散曲波变换(UDCT)多尺度、多方向、低冗余等特征,提出了一种新的多聚焦图像融合方法。首先使用UDCT对源图像进行多频带分解;然后根据多聚焦图像的特点,对分解后的低频子带系数运用一种基于改进拉普拉斯和算子的方案进行融合,对高频方向子带系数运用基于局部能量的融合规则进行融合,并对融合系数做一致性检测;最后重建各子带系数得到融合图像。实验结果表明:所提方法可以有效地融合源图像中的方向信息和细节特征,同时抑制了融合图像中的伪Gibbs现象;与基于拉普拉斯金字塔分解、小波变换以及轮廓波变换的图像融合方法相比,该方法取得了更好的视觉效果和量化结果。 展开更多
关键词 图像融合 均匀离散曲波变换 伪Gibbs现象
在线阅读 下载PDF
利用均匀离散曲波域LCHMM的图像降噪算法
2
作者 吴俊政 严卫东 +1 位作者 边辉 倪维平 《计算机工程与应用》 CSCD 2012年第13期196-200,205,共6页
提出了一种在均匀离散曲波域中利用局部上下文隐马尔可夫模型进行建模的图像降噪算法。介绍均匀离散曲波变换的特点,分析其系数的统计分布规律,表明适合用隐马尔可夫模型对其进行建模。通过期望最大化训练获取模型的参数,利用参数得到... 提出了一种在均匀离散曲波域中利用局部上下文隐马尔可夫模型进行建模的图像降噪算法。介绍均匀离散曲波变换的特点,分析其系数的统计分布规律,表明适合用隐马尔可夫模型对其进行建模。通过期望最大化训练获取模型的参数,利用参数得到降噪图像的系数估计。分别对光学图像和高分辨率的SAR图像进行了降噪实验,与小波域、轮廓波域的局部上下文隐马尔可夫模型等降噪方法进行比较,结果表明,提出的算法能够有效地去除噪声,具有较强的边缘保持能力。 展开更多
关键词 图像降噪 均匀离散曲波变换 局部上下文 隐马尔可夫模型
在线阅读 下载PDF
基于UDCT的改进双变量模型图像去噪 被引量:1
3
作者 杨兴明 牛坡礼 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期345-350,共6页
文章通过对均匀离散曲波变换(UDCT)域中小波系数统计特性的研究,针对传统双变量模型未考虑空间聚集性的不足,提出了一种新的双变量模型去噪算法。首先在双变量模型的基础上采用了蒙特卡洛方法估计各子带的噪声方差;然后引入邻域模型,通... 文章通过对均匀离散曲波变换(UDCT)域中小波系数统计特性的研究,针对传统双变量模型未考虑空间聚集性的不足,提出了一种新的双变量模型去噪算法。首先在双变量模型的基础上采用了蒙特卡洛方法估计各子带的噪声方差;然后引入邻域模型,通过调整邻域窗的大小估计相应窗口内小波系数的度量方差,得到初始化图像;最后以初始化图像和原噪声图像为先验信息,推导出改进的双变量模型来处理原噪声图像,且以对称K-L散度和最大迭代次数为收敛条件,得到最终去噪图像。实验结果证明了该算法的有效性。 展开更多
关键词 均匀离散曲波变换 蒙特卡洛方法 邻域模型 双变量模型
在线阅读 下载PDF
基于UDCT系数的改进HMT和在图像去噪中应用
4
作者 杨兴明 陈海燕 +2 位作者 王刚 王彬彬 赵银平 《计算机工程与应用》 CSCD 2013年第18期195-199,231,共6页
通过对均匀离散曲波变换(Uniform Discrete Curvelet Transform,UDCT)系数的统计特性研究,同时对系数相关性度量指标互信息量的分析,最终选择隐马尔可夫树模型对其系数建模,且用EM算法训练序列;针对训练时间过长问题,通过分析系数的衰... 通过对均匀离散曲波变换(Uniform Discrete Curvelet Transform,UDCT)系数的统计特性研究,同时对系数相关性度量指标互信息量的分析,最终选择隐马尔可夫树模型对其系数建模,且用EM算法训练序列;针对训练时间过长问题,通过分析系数的衰减性和尺度间系数延续性,提出一种新的对算法参数初值的方差和状态转移矩阵的优化方法,实验结果证明,在采用峰值信噪比和相似度作为图像去噪效果的度量时,同等条件下文中提出的算法比Wavelet HMT、Contourlet HMT、UDCT HMT算法有较好的实时性和去噪效果。 展开更多
关键词 均匀离散曲波变换 互信息 隐马尔可夫树模型(HMT) 最大期望(EM)算法 图像去噪
在线阅读 下载PDF
基于连分式的广义高斯模型UDCT贝叶斯图像去噪
5
作者 杨兴明 牛坡礼 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期50-54,共5页
文章通过研究均匀离散曲波变换(uniform discrete curvelet transform,UDCT)系数统计特性,发现该变换域的系数具有良好的相关性,且能有效解决广义高斯模型的参数拟合问题。在利用广义高斯模型的参数估计进行图像去噪过程中,从矩估计和... 文章通过研究均匀离散曲波变换(uniform discrete curvelet transform,UDCT)系数统计特性,发现该变换域的系数具有良好的相关性,且能有效解决广义高斯模型的参数拟合问题。在利用广义高斯模型的参数估计进行图像去噪过程中,从矩估计和最大似然估计出发,采用比牛顿迭代法更稳定的连分式迭代法来求解最大似然估计的超越方程;采用蒙特卡洛方法代替鲁棒中值法来精确地估计每个子带的噪声方差;在Bayesian最大后验概率估计的框架下完成图像去噪。实验结果表明,文中提到的算法与传统的VisuShrink、BayesShrink和SureShrink相比,具有较好的去噪效果和峰值信噪比。 展开更多
关键词 广义高斯模型 连分式迭代法 均匀离散曲波变换 蒙特卡洛方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部