针对无人机跟踪过程中目标遮挡和目标背景变化等因素导致的跟踪失败现象,提出一种M TF(M ean-shift by TWH and FB-error)跟踪算法。首先,在M ean-shift跟踪框架下引入目标加权直方图(TWH:Target-Weighted Histogram)描述目标,即在跟踪...针对无人机跟踪过程中目标遮挡和目标背景变化等因素导致的跟踪失败现象,提出一种M TF(M ean-shift by TWH and FB-error)跟踪算法。首先,在M ean-shift跟踪框架下引入目标加权直方图(TWH:Target-Weighted Histogram)描述目标,即在跟踪过程中,用目标的局部背景来削弱所有区域的内部背景特征,使目标特征突出;其次,添加FB-error约束,在目标被部分遮挡时,通过使用FB-error相关加权函数把目标当前位置的预测结果与Mean-shift矢量计算出的位置结果联合起来估计目标在t时刻的最终位置。实验表明,此跟踪算法在跟踪精度上有较大突破。展开更多
针对目标识别与抓取领域中CNN、Faster-RCNN等传统神经网络系列算法的识别准确率不高,实时性较差的问题,提出一种基于YOLOv3的改进神经网络算法。改进的YOLOv3算法主要是引用Inception网络思想,通过不同尺度的卷积核对目标进行多尺度特...针对目标识别与抓取领域中CNN、Faster-RCNN等传统神经网络系列算法的识别准确率不高,实时性较差的问题,提出一种基于YOLOv3的改进神经网络算法。改进的YOLOv3算法主要是引用Inception网络思想,通过不同尺度的卷积核对目标进行多尺度特征提取,在增加网络宽度的同时减少YOLOv3网络的循环次数。同时,YOLOv3算法对于anchor box的选取方式使用Meanshift(均值漂移)聚类算法与K-means聚类算法相结合的方式进行改进,解决了K值需要人为测定的问题。改进的YOLOv3算法在自制数据集进行对比实验,实验结果表明:改进YOLOv3算法的mAP(Mean Average Precision)值要高于YOLOv3算法10%,在识别速度上提高了9%,在充分满足实时识别的同时提高了对中小目标识别的准确率。展开更多
文摘针对无人机跟踪过程中目标遮挡和目标背景变化等因素导致的跟踪失败现象,提出一种M TF(M ean-shift by TWH and FB-error)跟踪算法。首先,在M ean-shift跟踪框架下引入目标加权直方图(TWH:Target-Weighted Histogram)描述目标,即在跟踪过程中,用目标的局部背景来削弱所有区域的内部背景特征,使目标特征突出;其次,添加FB-error约束,在目标被部分遮挡时,通过使用FB-error相关加权函数把目标当前位置的预测结果与Mean-shift矢量计算出的位置结果联合起来估计目标在t时刻的最终位置。实验表明,此跟踪算法在跟踪精度上有较大突破。
文摘针对目标识别与抓取领域中CNN、Faster-RCNN等传统神经网络系列算法的识别准确率不高,实时性较差的问题,提出一种基于YOLOv3的改进神经网络算法。改进的YOLOv3算法主要是引用Inception网络思想,通过不同尺度的卷积核对目标进行多尺度特征提取,在增加网络宽度的同时减少YOLOv3网络的循环次数。同时,YOLOv3算法对于anchor box的选取方式使用Meanshift(均值漂移)聚类算法与K-means聚类算法相结合的方式进行改进,解决了K值需要人为测定的问题。改进的YOLOv3算法在自制数据集进行对比实验,实验结果表明:改进YOLOv3算法的mAP(Mean Average Precision)值要高于YOLOv3算法10%,在识别速度上提高了9%,在充分满足实时识别的同时提高了对中小目标识别的准确率。