The residual elastic energy index is a scientific evaluation index for rockburst proneness.In laboratory test,it is sometimes difficult to obtain the post-peak curve or to test the rock sample several times,which make...The residual elastic energy index is a scientific evaluation index for rockburst proneness.In laboratory test,it is sometimes difficult to obtain the post-peak curve or to test the rock sample several times,which makes it impossible to calculate the residual elastic energy index accurately.Based on 241 sets of experimental data and four input indexes of density,elastic modulus,peak intensity and peak input strain energy,this study proposed a machine learning model combining k-means clustering algorithm and random forest regression model:cluster forest(CF)model.The research employed a stratified sampling method on the dataset to ensure the representativeness and balance of the samples.Subsequently,grid search and five-fold cross-validation were utilized to optimize the model’s hyperparameters,aiming to enhance its generalization capability and prediction accuracy.Finally,the performance of the optimal model was evaluated using a test set and compared with five other commonly used models.The results indicate that the CF model outperformed the other models on the testing set,with a mean absolute error of 6.6%,and an accuracy of 93.9%.The results of sensitivity analyses reveal the degree of influence of each variable on rockburst proneness and the applicability of the CF model when the input parameters are missing.The robustness and generalization ability of the model were verified by introducing experimental data from other studies,and the results confirmed the reliability and applicability of the model.Therefore,the model not only effectively simplifies the acquisition of the residual elastic energy index,but also shows excellent performance and wide applicability.展开更多
Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are...Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are based on the traditional quasi-steady method. In this work, an improved quasi-steady method along with the transient method was presented to compute the rotordynamic coefficients of a long seal. By comparisons with experimental data, the shortcomings of quasi-steady methods have been identified. Then, the effects of non-uniform incoming flow on seal dynamic coefficients were studied by transient simulations. Results indicate that the long seal has large cross stiffness k and direct mass M which are not good for rotor stability, while the transient method is more suitable for the long seal for its excellent performance in predicting M. When the incoming flow is non-uniform, the stiffness coefficients vary with the eccentric directions. Based on the rotordynamic coefficients under uniform incoming flow, the linearized fluid force formulas, which can consider the effects of non-uniform incoming flow, have been presented and can well explain the varying-stiffness phenomenon.展开更多
基金Project(42077244)supported by the National Natural Science Foundation of ChinaProject(SDGZK2431)supported by the State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,Sichuan University,China。
文摘The residual elastic energy index is a scientific evaluation index for rockburst proneness.In laboratory test,it is sometimes difficult to obtain the post-peak curve or to test the rock sample several times,which makes it impossible to calculate the residual elastic energy index accurately.Based on 241 sets of experimental data and four input indexes of density,elastic modulus,peak intensity and peak input strain energy,this study proposed a machine learning model combining k-means clustering algorithm and random forest regression model:cluster forest(CF)model.The research employed a stratified sampling method on the dataset to ensure the representativeness and balance of the samples.Subsequently,grid search and five-fold cross-validation were utilized to optimize the model’s hyperparameters,aiming to enhance its generalization capability and prediction accuracy.Finally,the performance of the optimal model was evaluated using a test set and compared with five other commonly used models.The results indicate that the CF model outperformed the other models on the testing set,with a mean absolute error of 6.6%,and an accuracy of 93.9%.The results of sensitivity analyses reveal the degree of influence of each variable on rockburst proneness and the applicability of the CF model when the input parameters are missing.The robustness and generalization ability of the model were verified by introducing experimental data from other studies,and the results confirmed the reliability and applicability of the model.Therefore,the model not only effectively simplifies the acquisition of the residual elastic energy index,but also shows excellent performance and wide applicability.
基金Project(51276213)supported by the National Natural Science Foundation of ChinaProject(2013BAF01B00)supported by the National Science and Technology Support Program of China
文摘Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are based on the traditional quasi-steady method. In this work, an improved quasi-steady method along with the transient method was presented to compute the rotordynamic coefficients of a long seal. By comparisons with experimental data, the shortcomings of quasi-steady methods have been identified. Then, the effects of non-uniform incoming flow on seal dynamic coefficients were studied by transient simulations. Results indicate that the long seal has large cross stiffness k and direct mass M which are not good for rotor stability, while the transient method is more suitable for the long seal for its excellent performance in predicting M. When the incoming flow is non-uniform, the stiffness coefficients vary with the eccentric directions. Based on the rotordynamic coefficients under uniform incoming flow, the linearized fluid force formulas, which can consider the effects of non-uniform incoming flow, have been presented and can well explain the varying-stiffness phenomenon.