Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a cry...Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a crystal nucleus grows into a symmetric dendrite in a free flow and into an asymmetry dendrite in a forced flow. As the forced flow velocity is increased, both of the promoting effect on the upstream arm and the inhibiting effects on the downstream and perpendicular arms are intensified, and the perpendicular arm tilts to the upstream direction. With increasing the anisotropy value to 0.14, all of the dendrite arms tip velocities are gradually stabilized and finally reach their relative saturation values. In addition, the effects of an undercooling parameter and a forced compound flow on the faceted dendrite growth were also investigated.展开更多
To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure p...To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure parameters were firstly compared, and then three-dimensional models of electric-magnetic-flow field were built and solved with finite element method(FEM). The comparison of the structures reveals that the cell bodies are similar while the current flow path and distribution ratio of bus bars are different. It appears that most of the current(70%-80%) in side A are used as the magnetic field compensation current and flow through two ends. The numerical simulation results indicate that the distributions of magnetic fields are different but all satisfy with the magnetohydrodynamics(MHD) stabilization, and the flow patterns are all two or multi vortexes with appropriate velocities. The comparison shows that all studied cells can satisfy with the physical field requirement, and the commercial applications also verify that the 400 kA cells have become the product of the mature and world's leading technology.展开更多
In order to consider the influence of steel pole on the measurement of wind speed sensors and determinate the installation position of wind speed sensors, the flow field around wind speed sensors was investigated. Bas...In order to consider the influence of steel pole on the measurement of wind speed sensors and determinate the installation position of wind speed sensors, the flow field around wind speed sensors was investigated. Based on the three-dimensional steady Reynolds-averaged Navier-Stokes equations and k-ε double equations turbulent model, the field flow around the wind speed sensor and the steel pole along a high-speed railway was simulated on an unstructured grid. The grid-independent validation was conducted and the accuracy of the present numerical simulation method was validated by experiments and simulations carried out by previous researchers. Results show that the steel pole has a significant influence on the measurement results of wind speed sensors. As the distance between two wind speed sensors is varied from 0.3 to 1.0 m, the impact angles are less than ±20°, it is proposed that the distance between two wind speed sensors is 0.8 m at least, and the interval between wind speed sensors and the steel pole is more than 1.0 m with the sensors located on the upstream side.展开更多
A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forwar...A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.展开更多
基金Project(11102164)supported by the National Natural Science Foundation of ChinaProject(G9KY101502)supported by NPU Foundation for Fundamental Research,China
文摘Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a crystal nucleus grows into a symmetric dendrite in a free flow and into an asymmetry dendrite in a forced flow. As the forced flow velocity is increased, both of the promoting effect on the upstream arm and the inhibiting effects on the downstream and perpendicular arms are intensified, and the perpendicular arm tilts to the upstream direction. With increasing the anisotropy value to 0.14, all of the dendrite arms tip velocities are gradually stabilized and finally reach their relative saturation values. In addition, the effects of an undercooling parameter and a forced compound flow on the faceted dendrite growth were also investigated.
基金Projects(51104187,51274241,61321003) supported by the National Natural Science Foundation of ChinaProject(20100162120008) supported by Doctoral Fund of Ministry of Education of China
文摘To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure parameters were firstly compared, and then three-dimensional models of electric-magnetic-flow field were built and solved with finite element method(FEM). The comparison of the structures reveals that the cell bodies are similar while the current flow path and distribution ratio of bus bars are different. It appears that most of the current(70%-80%) in side A are used as the magnetic field compensation current and flow through two ends. The numerical simulation results indicate that the distributions of magnetic fields are different but all satisfy with the magnetohydrodynamics(MHD) stabilization, and the flow patterns are all two or multi vortexes with appropriate velocities. The comparison shows that all studied cells can satisfy with the physical field requirement, and the commercial applications also verify that the 400 kA cells have become the product of the mature and world's leading technology.
基金Projects(U1334205,51205418)supported by the National Natural Science Foundation of ChinaProject(2014T002-A)supported by the Science and Technology Research Program of China Railway CorporationProject(132014)supported by the Fok Ying Tong Education Foundation of China
文摘In order to consider the influence of steel pole on the measurement of wind speed sensors and determinate the installation position of wind speed sensors, the flow field around wind speed sensors was investigated. Based on the three-dimensional steady Reynolds-averaged Navier-Stokes equations and k-ε double equations turbulent model, the field flow around the wind speed sensor and the steel pole along a high-speed railway was simulated on an unstructured grid. The grid-independent validation was conducted and the accuracy of the present numerical simulation method was validated by experiments and simulations carried out by previous researchers. Results show that the steel pole has a significant influence on the measurement results of wind speed sensors. As the distance between two wind speed sensors is varied from 0.3 to 1.0 m, the impact angles are less than ±20°, it is proposed that the distance between two wind speed sensors is 0.8 m at least, and the interval between wind speed sensors and the steel pole is more than 1.0 m with the sensors located on the upstream side.
基金Project(60672042) supported by the National Natural Science Foundation of China
文摘A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.