期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于生成对抗网络的地铁OD需求短时预测
被引量:
4
1
作者
申慧涛
郑亮
+1 位作者
李树凯
王璞
《铁道科学与工程学报》
EI
CAS
CSCD
北大核心
2022年第6期1530-1539,共10页
城市轨道交通作为一种安全、运量大、环保节能的交通工具,能有效缓解城市交通压力,逐渐成为大中城市居民最重要的出行方式之一。准确可靠的城市轨道交通短期客流预测对旅客出行与客流管控有重要意义。有鉴于此,提出一种新型的生成对抗网...
城市轨道交通作为一种安全、运量大、环保节能的交通工具,能有效缓解城市交通压力,逐渐成为大中城市居民最重要的出行方式之一。准确可靠的城市轨道交通短期客流预测对旅客出行与客流管控有重要意义。有鉴于此,提出一种新型的生成对抗网络(GAN)模型,即CWGAN-div模型,以实现对地铁OD需求的短期预测。CWGAN-div模型融合条件生成对抗网络(CGAN)模型以及基于Wasserstein散度的生成对抗网络(WGAN-div)模型,结合2种模型的特点,来提高原始生成对抗网络模型的稳定性和生成精度。考虑到地铁客流量变化的时间周期性,使用一种融合2类周期信息的时间标签作为条件信息,并与历史OD数据一起作为模型的输入。为了更充分、更稳定地挖掘地铁客流需求的时空相关性,采用一种改进的卷积神经网络,即残差神经网络构建CWGAN-div的内部结构。以深圳地铁1号线和4号线的44个站点为例,数值实验表明,CWGAN-div模型具有较好的稳定性和预测效果,相比传统预测方法和普通深度学习方法在预测精度上分别提高了27.97%和6.59%,相比其他组合模型提高了3.26%,相比基础CGAN模型和WGAN-div模型预测精度分别提高了3.83%和9.51%,且残差神经网络结构能够提升模型的稳定性,加快模型收敛。由此可见,CWGAN-div模型在预测短期地铁OD需求方面具有研究意义与现实意义。
展开更多
关键词
城市轨道交通
地铁od需求
短时交通预测
生成对抗网络
残差神经网络
在线阅读
下载PDF
职称材料
题名
基于生成对抗网络的地铁OD需求短时预测
被引量:
4
1
作者
申慧涛
郑亮
李树凯
王璞
机构
中南大学交通运输工程学院
北京交通大学轨道交通控制与安全国家重点实验室
出处
《铁道科学与工程学报》
EI
CAS
CSCD
北大核心
2022年第6期1530-1539,共10页
基金
轨道交通控制与安全国家重点实验室(北京交通大学)开放课题基金资助项目(RCS2022K004)
国家自然科学基金资助项目(71871227)
+1 种基金
中南大学创新驱动计划(2019CX018)
湖南省自然科学基金资助项目(2021JJ30888)。
文摘
城市轨道交通作为一种安全、运量大、环保节能的交通工具,能有效缓解城市交通压力,逐渐成为大中城市居民最重要的出行方式之一。准确可靠的城市轨道交通短期客流预测对旅客出行与客流管控有重要意义。有鉴于此,提出一种新型的生成对抗网络(GAN)模型,即CWGAN-div模型,以实现对地铁OD需求的短期预测。CWGAN-div模型融合条件生成对抗网络(CGAN)模型以及基于Wasserstein散度的生成对抗网络(WGAN-div)模型,结合2种模型的特点,来提高原始生成对抗网络模型的稳定性和生成精度。考虑到地铁客流量变化的时间周期性,使用一种融合2类周期信息的时间标签作为条件信息,并与历史OD数据一起作为模型的输入。为了更充分、更稳定地挖掘地铁客流需求的时空相关性,采用一种改进的卷积神经网络,即残差神经网络构建CWGAN-div的内部结构。以深圳地铁1号线和4号线的44个站点为例,数值实验表明,CWGAN-div模型具有较好的稳定性和预测效果,相比传统预测方法和普通深度学习方法在预测精度上分别提高了27.97%和6.59%,相比其他组合模型提高了3.26%,相比基础CGAN模型和WGAN-div模型预测精度分别提高了3.83%和9.51%,且残差神经网络结构能够提升模型的稳定性,加快模型收敛。由此可见,CWGAN-div模型在预测短期地铁OD需求方面具有研究意义与现实意义。
关键词
城市轨道交通
地铁od需求
短时交通预测
生成对抗网络
残差神经网络
Keywords
urban rail transit
metro
od
demand
short-term traffic prediction
Generative Adversarial Network
residual neural network
分类号
U293.13 [交通运输工程—交通运输规划与管理]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于生成对抗网络的地铁OD需求短时预测
申慧涛
郑亮
李树凯
王璞
《铁道科学与工程学报》
EI
CAS
CSCD
北大核心
2022
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部