期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于GBDT算法的地铁IC卡通勤人群识别
被引量:
13
1
作者
翁小雄
吕攀龙
《重庆交通大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第5期8-12,共5页
随着公交IC卡的应用和普及,从IC卡数据中挖掘通勤用户,为下阶段采取分流措施缓解早晚高峰压力,优化票价制定等具有重要意义。以广州市地铁数据为依托,选取合适的特征属性,提出了一种基于梯度提升树(gradient boosting decision tree,GB...
随着公交IC卡的应用和普及,从IC卡数据中挖掘通勤用户,为下阶段采取分流措施缓解早晚高峰压力,优化票价制定等具有重要意义。以广州市地铁数据为依托,选取合适的特征属性,提出了一种基于梯度提升树(gradient boosting decision tree,GBDT)机器学习算法为基础的通勤人群识别方法。首先以周工作日的首末次平均刷卡时间、首末次平均刷卡时长、首末次刷卡时长波动程度、刷卡次数总和等5个特征来制定调查问卷的数据格式。然后利用处理过的带标签(通勤/非通勤)的调查问卷数据去训练GBDT分类器模型,测试样本的通勤识别的准确率高达94.16%。最后利用该模型对广州地铁IC卡数据通勤人群进行识别,结果显示广州地铁刷卡数据中通勤人群数量为131万左右,占总地铁刷卡出行人数32%左右。
展开更多
关键词
交通工程
城市交通
地铁ic卡数据
GBDT
通勤识别
在线阅读
下载PDF
职称材料
题名
基于GBDT算法的地铁IC卡通勤人群识别
被引量:
13
1
作者
翁小雄
吕攀龙
机构
华南理工大学土木与交通学院
出处
《重庆交通大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第5期8-12,共5页
基金
国家自然科学基金项目(51578247)
广州市交通委员会科技项目(GZJTRKT2016-1201)
广东省交通运输厅科技项目(科技-2015-02-070)
文摘
随着公交IC卡的应用和普及,从IC卡数据中挖掘通勤用户,为下阶段采取分流措施缓解早晚高峰压力,优化票价制定等具有重要意义。以广州市地铁数据为依托,选取合适的特征属性,提出了一种基于梯度提升树(gradient boosting decision tree,GBDT)机器学习算法为基础的通勤人群识别方法。首先以周工作日的首末次平均刷卡时间、首末次平均刷卡时长、首末次刷卡时长波动程度、刷卡次数总和等5个特征来制定调查问卷的数据格式。然后利用处理过的带标签(通勤/非通勤)的调查问卷数据去训练GBDT分类器模型,测试样本的通勤识别的准确率高达94.16%。最后利用该模型对广州地铁IC卡数据通勤人群进行识别,结果显示广州地铁刷卡数据中通勤人群数量为131万左右,占总地铁刷卡出行人数32%左右。
关键词
交通工程
城市交通
地铁ic卡数据
GBDT
通勤识别
Keywords
traff
ic
engineering
urban traff
ic
subway
ic
card data
GBDT
commute recognition
分类号
U491 [交通运输工程—交通运输规划与管理]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于GBDT算法的地铁IC卡通勤人群识别
翁小雄
吕攀龙
《重庆交通大学学报(自然科学版)》
CAS
CSCD
北大核心
2019
13
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部