期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于XGBoost算法的近紫外通道地表反射率模拟 被引量:2
1
作者 奥勇 李红丽 +1 位作者 张文娟 秦梦 《测绘通报》 CSCD 北大核心 2023年第6期68-74,103,共8页
紫外谱段在全球极光探测、海洋溢油、大气辉光等领域具有重要应用价值,其地表反射特性是研究中的重要背景数据,但现有卫星数据资源较少,难以满足应用需求。针对这一问题,本文提出了基于机器学习XGBoost算法的近紫外(350~400 nm)通道地... 紫外谱段在全球极光探测、海洋溢油、大气辉光等领域具有重要应用价值,其地表反射特性是研究中的重要背景数据,但现有卫星数据资源较少,难以满足应用需求。针对这一问题,本文提出了基于机器学习XGBoost算法的近紫外(350~400 nm)通道地表反射率数据模拟方法。首先,选取Sentinel-2 MSI 2、3、4通道多光谱数据为数据源,结合其通道特点基于USGS地物光谱数据库获取植被、水体、土壤等典型地物光谱数据,并等效计算到相应通道。其次,对数据源和待模拟通道开展相关性分析,Sentinel-2 MSI 2、3、4通道与待模拟通道相关系数均大于0.88,这表明基于该数据源可开展近紫外地表反射率数据模拟。然后,基于等效计算后的典型地物光谱数据集,利用XGBoost算法构建近紫外通道地表反射率回归模型。精度分析结果表明,所有通道模型决定系数(R^(2))均达到0.91以上,均方根误差(RMSE)均小于0.076,平均绝对误差百分比(MAPE)整体在20%以内,且上述3个精度指标针对不同类别样本的标准差在0.0212范围内,可见模型精度较高,同时具有良好的稳健性。最后,基于Sentinel-2 MSI 2、3、4通道图像数据,生成355、365、375、385、395 nm的地表反射率模拟图像,图像较好地体现了地物光谱特性。 展开更多
关键词 近紫外 地表反射率模拟 机器学习 XGBoost
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部