期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于knnVAR模型的地理传感数据预测
1
作者
廖仁健
周丽华
+1 位作者
肖清
杜国王
《计算机科学》
CSCD
北大核心
2018年第B11期431-435,457,共6页
地理传感数据的预测在经济、工程、自然科学和社会科学中被广泛应用。数据中不同站点的空间相关性和同一站点的时间相关性给传统的预测方法带来了极大的挑战。文中提出了一种将数据中时间信息和空间信息有效融合,同时考虑了各传感序列...
地理传感数据的预测在经济、工程、自然科学和社会科学中被广泛应用。数据中不同站点的空间相关性和同一站点的时间相关性给传统的预测方法带来了极大的挑战。文中提出了一种将数据中时间信息和空间信息有效融合,同时考虑了各传感序列独特性的knnVAR模型,来对地理传感数据进行预测。该模型通过计算时空距离量化数据中的时间信息和空间信息,并基于时空距离寻找K近邻,最后再将近邻结果应用于向量自回归模型中完成预测。knn-VAR模型采用寻找时空近邻的方式将数据中时间维度和空间维度的相关性进行有效融合,同时使用在时空上具有高度相关性的近邻对传感序列进行预测,充分考虑了各地理序列的独特性。实验结果表明,knnVAR模型能有效提高地理传感数据的预测精度。
展开更多
关键词
地理传感数据
时空距离
K近邻
向量自回归模型
在线阅读
下载PDF
职称材料
题名
基于knnVAR模型的地理传感数据预测
1
作者
廖仁健
周丽华
肖清
杜国王
机构
云南大学信息学院
出处
《计算机科学》
CSCD
北大核心
2018年第B11期431-435,457,共6页
基金
国家自然科学基金项目(61262069
61472346
+7 种基金
61662086
61762090)
云南省自然科学基金项目(2016FA026
2015FB114)
云南省创新团队
云南省高校科技创新团队(IRTSTYN)
云南大学创新团队发展计划(XT412011)
云南大学谱传感和边疆安全重点实验室(C6165903)资助
文摘
地理传感数据的预测在经济、工程、自然科学和社会科学中被广泛应用。数据中不同站点的空间相关性和同一站点的时间相关性给传统的预测方法带来了极大的挑战。文中提出了一种将数据中时间信息和空间信息有效融合,同时考虑了各传感序列独特性的knnVAR模型,来对地理传感数据进行预测。该模型通过计算时空距离量化数据中的时间信息和空间信息,并基于时空距离寻找K近邻,最后再将近邻结果应用于向量自回归模型中完成预测。knn-VAR模型采用寻找时空近邻的方式将数据中时间维度和空间维度的相关性进行有效融合,同时使用在时空上具有高度相关性的近邻对传感序列进行预测,充分考虑了各地理序列的独特性。实验结果表明,knnVAR模型能有效提高地理传感数据的预测精度。
关键词
地理传感数据
时空距离
K近邻
向量自回归模型
Keywords
Geosensor data
Space-time distance
K nearest neighbor
Vector autoregressive model
分类号
TP301 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于knnVAR模型的地理传感数据预测
廖仁健
周丽华
肖清
杜国王
《计算机科学》
CSCD
北大核心
2018
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部