在Landsat 5高精度正射影像的基础上,挑选高质量、无云的影像数据,经过大气–地形–BRDF耦合校正处理,消除大气散射和吸收、地形起伏以及地表二向反射(Bidirectional Reflectance Distribution Function,BRDF)对地表反射率反演的影响,...在Landsat 5高精度正射影像的基础上,挑选高质量、无云的影像数据,经过大气–地形–BRDF耦合校正处理,消除大气散射和吸收、地形起伏以及地表二向反射(Bidirectional Reflectance Distribution Function,BRDF)对地表反射率反演的影响,生成了2009年中国区域的全要素地表反射率产品。数据空间分辨率为30 m,包含完整的数据文件、质量文件以及元数据文件。作为即得即用(Ready To Use,RTU)产品的一种,大气–地形–BRDF全要素地表反射率产品可应用于地表覆盖变化调查、遥感地表参数定量反演、全球变化研究等领域。展开更多
To investigate and analyze the thermo-hydro-mechanical(THM) coupling phenomena of a surrounding rock mass in an argillaceous formation, a nuclear waste disposal concept in drifts was represented physically in an in-si...To investigate and analyze the thermo-hydro-mechanical(THM) coupling phenomena of a surrounding rock mass in an argillaceous formation, a nuclear waste disposal concept in drifts was represented physically in an in-situ test way. A transversely isotropic model was employed to reproduce the whole test process numerically. Parameters of the rock mass were determined by laboratory and in-situ experiments. Based on the numerical simulation results and in-situ test data, the variation processes of pore water pressure, temperature and deformation of surrounding rock were analyzed. Both the measured data and numerical results reveal that the thermal perturbation is the principal driving force which leads to the variation of pore water pressure and deformations in the surrounding rock. The temperature, pore pressure and deformation of rock mass change rapidly at each initial heating stage with a constant heating power. The temperature field near the heater borehole is relatively steady in the subsequent stages of the heating phase. However, the pore pressure and deformation fields decrease gradually with temperature remaining unchanged condition. It also shows that a transversely isotropic model can reproduce the THM coupling effects generating in the near-field of a nuclear waste repository in an argillaceous formation.展开更多
文摘在Landsat 5高精度正射影像的基础上,挑选高质量、无云的影像数据,经过大气–地形–BRDF耦合校正处理,消除大气散射和吸收、地形起伏以及地表二向反射(Bidirectional Reflectance Distribution Function,BRDF)对地表反射率反演的影响,生成了2009年中国区域的全要素地表反射率产品。数据空间分辨率为30 m,包含完整的数据文件、质量文件以及元数据文件。作为即得即用(Ready To Use,RTU)产品的一种,大气–地形–BRDF全要素地表反射率产品可应用于地表覆盖变化调查、遥感地表参数定量反演、全球变化研究等领域。
基金Project(41272287)supported by the National Natural Science Foundation of China
文摘To investigate and analyze the thermo-hydro-mechanical(THM) coupling phenomena of a surrounding rock mass in an argillaceous formation, a nuclear waste disposal concept in drifts was represented physically in an in-situ test way. A transversely isotropic model was employed to reproduce the whole test process numerically. Parameters of the rock mass were determined by laboratory and in-situ experiments. Based on the numerical simulation results and in-situ test data, the variation processes of pore water pressure, temperature and deformation of surrounding rock were analyzed. Both the measured data and numerical results reveal that the thermal perturbation is the principal driving force which leads to the variation of pore water pressure and deformations in the surrounding rock. The temperature, pore pressure and deformation of rock mass change rapidly at each initial heating stage with a constant heating power. The temperature field near the heater borehole is relatively steady in the subsequent stages of the heating phase. However, the pore pressure and deformation fields decrease gradually with temperature remaining unchanged condition. It also shows that a transversely isotropic model can reproduce the THM coupling effects generating in the near-field of a nuclear waste repository in an argillaceous formation.